

Unit-1 –Basics of Algorithms and
Mathematics

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) Algorithm and Properties of Algorithm

Algorithm

 An algorithm is any well-defined computational procedure that takes some values or set of values as
input and produces some values or set of values as output.

 An algorithm is a sequence of computational steps that transform the input into the output.

 An algorithm is a set of rules for carrying out calculation either by hand or on a machine.

 An algorithm is an abstraction of a program to be executed on a physical machine (model of
Computation).

Properties of Algorithm

 All the algorithms should satisfy following five properties,

1) Input: There is zero or more quantities supplied as input to the algorithm.
2) Output: By using inputs which are externally supplied the algorithm produces at least one quantity

as output.
3) Definiteness: The instructions used in the algorithm specify one or more operations. These

operations must be clear and unambiguous. This implies that each of these operations must be
definite; clearly specifying what is to be done.

4) Finiteness: Algorithm must terminate after some finite number of steps for all cases.
5) Effectiveness: The instructions which are used to accomplish the task must be basic i.e. the human

being can trace the instructions by using paper and pencil in every way.

(2) Mathematics for Algorithmic Set

Set

Unordered collection of distinct elements. Can be represented either by property or by value.

Set Cardinality

 The number of elements in a set is called cardinality or size of the set, denoted |S| or sometimes n(S).

 The two sets have same cardinality if their elements can be put into a one-to-one correspondence.

It is easy to see that the cardinality of an empty set is zero i.e., | ø |.

Multiset

 If we do want to take the number of occurrences of members into account, we call the group a
multiset.

 For example, {7} and {7, 7} are identical as set but {7} and {7, 7} are different as multiset.

Infinite Set

A set contains infinite elements. For example, set of negative integers, set of integers, etc…

Empty Set

Set contain no member, denoted as { } or ø.

Unit-1 –Basics of Algorithms and
Mathematics

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Subset

For two sets A and B, we say that A is a subset of B, written A B, if every member of set A is also a

member of set B. Formally, A B if x ϵ A implies x ϵ B

Proper Subset

Set A is a proper subset of B, written A B, if A is a subset of B and not equal to B. That is, a set A is

proper subset of B if A B but A B.

Equal Sets

The sets A and B are equal, written A = B, if each is a subset of the other.

Let A and B be sets. A = B if A B and B A.

Power Set

 Let A be the set. The power of A, written P(A) or 2A, is the set of all subsets of A. That is, P (A) = {B: B

A}.

 For example, consider A= {0, 1}.

The power set of A is {{}, {0}, {1}, {0, 1}}.

Union of sets

 The union of A and B, written A B, is the set we get by combining all elements in A and B into a
single set.

 That is, A B = {x: x ϵ A or x ϵ B}.

Disjoint sets

 Let A and B be sets. A and B are disjoint if A ∩ B = .

Intersection sets

 The intersection of set A and B, written A ∩ B, is the set of elements that are both in A and in B. That

is, A ∩ B = { x : x ϵ A and x ϵ B}.

Difference of Sets

 Let A and B be sets. The difference of A and B is A - B = {x : x ϵ A and x B}.

 For example, let A = {1, 2, 3} and B = {2, 4, 6, 8}. The set difference A - B = {1, 3} while B-A = {4, 6, 8}.

Complement of a set

 All set under consideration are subset of some large set U called universal set.

 Given a universal set U, the complement of A, written A', is the set of all elements under
consideration that are not in A.

 Formally, let A be a subset of universal set U.

 The complement of A in U is A' = A - U OR A' = {x: x ϵ U and x A}.

Unit-1 –Basics of Algorithms and
Mathematics

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Symmetric difference

 Let A and B be sets. The symmetric difference of A and B is,

A B = { x : x ϵ A or x ϵ B but not in both}

As an example, consider the following two sets A = {1, 2, 3} and B = {2, 4, 6, 8}. The symmetric difference,

A B = {1, 3, 4, 6, 8}.

Sequences

 A sequence of objects is a list of objects in some order. For example, the sequence 7, 21, 57 would be
written as (7, 21, 57). In a set the order does not matter but in a sequence it does.

 Repetition is not permitted in a set but repetition is permitted in a sequence. So, (7, 7, 21, 57) is
different from {7, 21, 57}.

(3) Functions & Relations

Relation

 Let X and Y be two sets. Any subset ρ of their Cartesian product X x Y is a relation.

 When x Є X and y Є Y, we say that x is in relation with y according to ρ denoted as x ρ y if and only if (x,
y) Є ρ.

 Relationship between two sets of numbers is known as function. Function is special kind of relation.

 A number in one set is mapped to number in another set by the function.
But note that function maps values to one value only. Two values in one set could map to one value but

one value must never map to two values.

Function

 Consider any relation f between x and y.

 The relation is called a function if for each x Є X, there exists one and only one y Є Y such that (x, y) Є f.
 This is denoted as f : x → y, which is read as f is a function from x to y denoted as f(x).

 The set X is called domain of function, set Y is its image and the set () = * () | + is its range.
 For example, if we write function as follows,

 ()

 Then we can say that () equals to cube.

 For following values it gives result as,
 () ()

 () ()
 () ()

 () ()

This function () maps number to their cube.

 In general we can say that a relation is any subset of the Cartesian product of its domain and co

domain.
 The function maps only one value from domain to its co domain while relation maps one value from

domain to more than one values of its co domain.

Unit-1 –Basics of Algorithms and
Mathematics

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 So that by using this concept we can say all functions are considered as relation also but not vice
versa.

Properties of the Relation

 Different relations can observe some special properties namely reflexive, symmetric , transitive and
Anti symmetric.

Reflexive:

 When for all values is true then relation R is said to be reflexive.

 E.g. the equality (=) relation is reflexive.

Symmetric:

 When for all values of x and y, is true. Then we can say that relation R is symmetric.
Equality (=) relation is also symmetric.

Transitive:

 When for all values of x, y and z, x R y and y R z then we can say that x R z, which is known as transitive
property of the relation.

 E.g. the relation grater then > is transitive relation.

 If x>y and y>z then we can say that x>z i.e. x is greater than y and y is greater than z then x is also
greater than z.

Anti-symmetric:

 When for all values of x and y if x R y and y R x implies x=y then relation R is Anti - symmetric.
 Anti-symmetric property and symmetric properties are lookalike same but they are different.

 E.g. consider the relation greater than or equal to if x y and y x then we can say that y = x.

 A relation is Anti-symmetric if and only if x X and (x, x) R.

Equivalence Relation:

 Equivalence Relation plays an important role in discrete mathematics.

 Equivalent relation declares or shows some kind of equality or say equivalence.
 The relation is equivalent only when it satisfies all following property i.e. relation must be reflexive,

symmetric and transitive then it is called Equivalence Relation.

 E.g. Equality ‘=’ relation is equivalence relation because equality proves above condition i.e. it is
reflexive, symmetric and transitive.
o Reflexive: x=x is true for all values of x. so we can say that ’=’ is reflexive.
o Symmetric: x=y and y=x is true for all values of x and y then we can say that ‘=’ is symmetric.
o Transitive: if x=y and y=z is true for all values then we can say that x=z. thus’ =’ is transitive.

Unit-1 –Basics of Algorithms and
Mathematics

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(4) Quantifiers

 There are two basic quantifiers.

o Universal Quantification:
P (a) is the preposition, if P (a) is give expected result for all values of a in the universe of

discourse. The universal quantification of P (a) is denoted by, (). So is called as for all i.e. it
is the Universal Quantifier.

o Existential Quantification:

P (a) is the preposition, if there exits an element a in the universe of discourse such that P (a) is
giving expected result. Here the Existential Quantification of P (a) is represented by ()

called as for some, i.e. it is Existential Quantifier.

(5) Vectors and Matrices

 A vector, u, means a list (or n-tuple) of numbers:

u = (u1, u2, . . . , un)

 Where ui are called the components of u. If all the ui are zero i.e., ui = 0, then u is called the zero
vector.

 Given vectors u and v are equal i.e., u = v, if they have the same number of components and if
corresponding components are equal.

Addition of Two Vectors

 If two vectors, u and v, have the number of components, their sum, u + v, is the vector obtained by
adding corresponding components from u and v.

 u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn)

 = (u1 + v1 + u2 + v2, . . . , un + vn)

Multiplication of a vector by a Scalar

 The product of a scalar k and a vector u i.e., ku, is the vector obtained by multiplying each component
of u by k:

 ku = k(u1, u2, . . . , un)

 = ku1, ku2, . . . , kun

 It is not difficult to see k(u + v) = ku + kv where k is a scalar and u and v are vectors

Dot Product and Norm

 The dot product or inner product of vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) is denoted by
u.v and defined by

u.v = u1v1 + u2v2 + . . . + unvn

The norm or length of a vector, u, is denoted by ||u|| and defined by

Unit-1 –Basics of Algorithms and
Mathematics

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Matrices

 Matrix, A, means a rectangular array of numbers

 The m horizontal n-tuples are called the rows of A, and the n vertical m-tuples, its columns. Note that

the element aij, called the ij-entry, appear in the ith row and the jth column.

Column Vector

 A matrix with only one column is called a column vector.

Zero Matrix

 A matrix whose entries are all zero is called a zero matrix and denoted by 0.

Matrix Addition

 Let A and B be two matrices of the same size. The sum of A and B is written as A + B and obtained by
adding corresponding elements from A and B.

Properties of Matrix under Addition and Multiplication

Let A, B, and C is matrices of same size and let k and I two scalars. Then

i. (A + B) + C = A + (B + C)

ii. A + B = B + A

iii. A + 0 = 0 + A = A

Unit-1 –Basics of Algorithms and
Mathematics

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

iv. A + (-A) = (-A) + A = 0

v. k(A + B) = kA + kB

vi. (k + I)A = kA + I A

vii. (k I)A = k(I A)

viii. I A = A

Matrix Multiplication

 Suppose A and B are two matrices such that the number of columns of A is equal to number of rows

of B. Say matrix A is an m×p matrix and matrix B is a p×n matrix. Then the product of A and B is the
m×n matrix whose ij-entry is obtained by multiplying the elements of the i th row of A by the

corresponding elements of the jth column of B and then adding them.

 It is important to note that if the number of columns of A is not equal to the number of rows of B,
then the product AB is not defined.

Properties of Matrix Multiplication
Let A, B, and C be matrices and let k be a scalar. Then

i. (AB)C = A(BC)

ii. A(B+C) = AB + AC

iii. (B+C)A = BA + CA

iv. k(AB) = (kB)B = A(kB)

Transpose

 The transpose of a matrix A is obtained by writing the row of A, in order, as columns and denoted by
AT. In other words, if A - (Aij), then B = (bij) is the transpose of A if bij - aji for all i and j.

 It is not hard to see that if A is an m×n matrix, then AT is an n×m matrix.
For example if

A =

then AT =

Square Matrix

 If the number of rows and the number of columns of any matrix are same, we say matrix is a square

matrix, i.e., a square matrix has same number of rows and columns. A square matrix with n rows and
n columns is said to be order n and is called an n-square matrix.

 The main diagonal, or simply diagonal, of an n-square matrix A = (aij) consists of the elements a (11), a
(22), a (33) . . . a (mn).

Unit Matrix

 The n-square matrix with 1's along the main diagonal and 0's elsewhere is called the unit matrix and
usually denoted by I.

 The unit matrix plays the same role in matrix multiplication as the number 1 does in the usual

Unit-1 –Basics of Algorithms and
Mathematics

 8

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

multiplication of numbers.

A I = I A = A for any square matrix A.

(6) Linear Inequalities and Linear Equations.
Inequalities
The term inequality is applied to any statement involving one of the symbols <, >, ≤, ≥.

Examples of inequalities are:

i. x≥1
ii. x + y + 2z > 16

iii. p2 + q2 ≤1/2
iv. a2 + ab > 1

Fundamental Properties of Inequalities

1. If a≤b and c is any real number, then a + c≤b + c.

 For example, -3≤-1 implies -3+4≤-1 + 4.

2. If a≤b and c is positive, then ac≤bc.

 For example, 2≤3 implies 2(4) ≤3(4).

3. If a≤b and c is negative, then ac≥bc.

 For example, 3≤9 implies 3(-2) ≥9(-2).

4. If a≤b and b≤c, then a≤ c.

 For example, -1/2≤2 and 2≤8/3 imply -1/2≤8/3.

Solution of Inequality

 By solution of the one variable inequality 2x + 3≤7 we mean any number which substituted for x yields
a true statement.

 For example, 1 is a solution of 2x + 3≤7 since 2(1) + 3 = 5 and 5 is less than and equal to 7.

 By a solution of the two variable inequality x - y≤5 we mean any ordered pair of numbers which when
substituted for x and y, respectively, yields a true statement.

 For example, (2, 1) is a solution of x - y≤5 because 2-1 = 1 and 1≤5.

 By a solution of the three variable inequalities 2x - y + z≥3 we means an ordered triple of number
which when substituted for x, y and z respectively, yields a true statement.

 For example, (2, 0, 1) is a solution of 2x - y + z≤3.

 A solution of an inequality is said to satisfy the inequality. For example, (2, 1) is satisfy x - y≤5.

Linear Equations

One Unknown

 A linear equation in one unknown can always be stated into the standard form

ax = b

 Where x is an unknown and a and b are constants. If a is not equal to zero, this equation has a unique

Unit-1 –Basics of Algorithms and
Mathematics

 9

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

solution

x = b/a

Two Unknowns

 A linear equation in two unknown, x and y, can be put into the form

ax + by = c

 Where x and y are two unknowns and a, b, c are real numbers. Also, we assume that a and b are no
zero.

Solution of Linear Equation

 A solution of the equation consists of a pair of number, u = (k1, k2), which satisfies the equation ax +
by = c.

 Mathematically speaking, a solution consists of u = (k1, k2) such that ak1 + bk2 = c.
 Solution of the equation can be found by assigning arbitrary values to x and solving for y or assigning

arbitrary values to y and solving for x.

Two Equations in the Two Unknowns

 A system of two linear equations in the two unknowns x and y is

a1x + b1x = c1
a2x + b2x = c2

 Where a1, a2, b1, b2 are not zero. A pair of numbers which satisfies both equations is called a

simultaneous solution of the given equations or a solution of the system of equations.

 Geometrically, there are three cases of a simultaneous solution

1. If the system has exactly one solution, the graph of the linear equations intersects in one point.

2. If the system has no solutions, the graphs of the linear equations are parallel.

3. If the system has an infinite number of solutions, the graphs of the linear equations coincide.

 The special cases (2) and (3) can only occur when the coefficient of x and y in the two linear equations
are proportional.

OR => a1b2 - a2b1 = 0 => = 0

The system has no solution when

 The solution to the following system can be obtained by the elimination process, whereby reduce the

system to a single equation in only one unknown.

a1x + b1x = c1
a2x + b2x = c2

Unit-1 –Basics of Algorithms and
Mathematics

 10

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(7) Algorithm Analysis Measures and Design Techniques.

Algorithm Analysis Measures
 Measuring Space complexity

 Measuring Time complexity

 Input size
 Computing Best case, Average case, Worst case

 Computing order of growth of algorithm.

Algorithm Design Techniques
 Divide and Conquer
 Greedy Approach

 Dynamic Programming

 Branch and Bound
 Backtracking
Randomized Algorithm

(8) Explain why analysis of algorithms is important

 When we have a problem to solve, there may be several suitable algorithms available. We would
obviously like to choose the best.

 Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.

 Generally, by analyzing several candidate algorithms for a problem, a most efficient one can be easily
identified.

 Analysis of algorithm is required to decide which of the several algorithms is preferable.
 There are two different approaches to analyze an algorithm.

1. Empirical (posteriori) approach to choose an algorithm: Programming different competing
techniques and trying them on various instances with the help of computer.

2. Theoretical (priori) approach to choose an algorithm: Determining mathematically the quantity of
resources needed by each algorithm as a function of the size of the instances considered. The
resources of most interest are computing time (time complexity) and storage space (space
complexity). The advantage is this approach does not depend on programmer, programming
language or computer being used.

 Unit 2- Analysis of Algorithm

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) The Efficient Algorithm

 Analysis of algorithm is required to measure the efficiency of algorithm.

 Only after determining the efficiency of various algorithms, you will be able to make a well informed
decision for selecting the best algorithm to solve a particular problem.

 We will compare algorithms based on their execution time. Efficiency of an algorithm means how
fast it runs.

 If we want to measure the amount of storage that an algorithm uses as a function of the size of the
instances, there is a natural unit available Bit.

 On the other hand, is we want to measure the efficiency of an algorithm in terms of time it takes to
arrive at result, there is no obvious choice.

 This problem is solved by the principle of invariance, which states that two different
implementations of the same algorithm will not differ in efficiency by more than some multiplicative
constant.

 Suppose that the time taken by an algorithm to solve an instance of size n is never more than cn

seconds, where c is some suitable constant.

 Practically size of instance means any integer that in some way measures the number of components
in an instance.

 Sorting problem: size is no. of items to be sorted.

 Graph: size is no. of nodes or edges or both involved.

 We say that the algorithm takes a time in the order of n i.e. it is a linear time algorithm.

 If an algorithm never takes more than cn2 seconds to solve an instance of size n, we say it takes time
in the order of cn2 i.e. quadratic time algorithm.

 Some algorithms behave as Polynomial: (2n or nk) , Exponential : (cn or n!), Cubic: (n3 or 5n3+n2),
Logarithmic: (log n or n log n)

(2) Worst Case, Best Case & Average Case Complexity.

Worst Case Analysis
 In the worst case analysis, we calculate upper bound on running time of an algorithm.
 We must know the case that causes maximum number of operations to be executed.

 e.g. For Linear Search, the worst case happens when the element to be searched (x in the above code) is not
present in the array.

 When x is not present, the search () functions compares it with all the elements of arr[] one by one.

Average Case Analysis
 In average case analysis, we take all possible inputs and calculate computing time for all of the inputs.

 Sum all the calculated values and divide the sum by total number of inputs. We must know (or predict)
distribution of cases.

 For the linear search problem, let us assume that all cases are uniformly distributed (including the case of x
not being present in array).

 So we sum all the cases and divide the sum by (n+1)

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29

 Unit 2- Analysis of Algorithm

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Best Case Analysis
 In the best case analysis, we calculate lower bound on running time of an algorithm.
 We must know the case that causes minimum number of operations to be executed.

 In the linear search problem, the best case occurs when x is present at the fi rst location.

(3) Amortized Analysis
 In Amortize analysis finds the time required to perform a sequence of data structure operations is

average of overall operation performed.

 It guarantees the average time per operation over worst case performance.

 It is used to show the average cost of an operation.
There are three methods of amortized analysis

1) Aggregate Method
 In this method we computes worst case time T(n) for n operations.

 Amortized cost is T(n)/n per operation.
 It gives the average performance of each operation in the worst case.

Example:
Operation: PUSH (X,S) POP (S) MULTI-POP (S,k)

Worst Case: O(1) O(1) O(min(s,k)=O(n)

MULTI-POP (S,k)

1. while not STACK-EMPTY(S) & k ≠ 0 This algorithm removes

k top elements or pops

entire stack

2. do POP (S)

3. K=k-1

o Total cost of sequence of n pop operations is O(n2).
o The average cost is O(n)/n = O(1).

2) Accounting Method
 In accounting method we assign different charges to different operations.
 The amount we charge in operation is called “amortized cost”.

 When amortized cost > actual cost then difference is assigned to “Credit”.

 This credit can be used when amortized cost < actual cost.

 The total amortized cost of a sequence of operations must be an upper bound on the total cost of

sequence.
Ci = actual cost of ith operation , ̂ = amortized cost of ith operation

∑ ̂

 ∑

Example:

Operation Actual Cost Amortized Cost
 Amortized cost = O(n)

PUSH 1 2

POP 1 0
MULTI-POP Min(S,k) 0

 Unit 2- Analysis of Algorithm

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

3) Potential Method
 It is similar to the accounting method.
 Instead of representing prepaid work as credit it represents prepaid work as “Potential Energy”.

 Suppose initial data structure is D0 for n operations D0, D1, D2… Dn be the data structures let C1, C2…
Cn denotes actual cost.

 φ is potential function that maps Data structure Di to a real number φ (Di)

 ̂ () ()

(4) Asymptotic Notations.
Asymptotic notation is used to describe the running time of an algorithm.
It shows order of growth of function.

Θ-Notation (Same order)

 For a given function g(n), we denote by Θ(g(n)) the set of functions

Θ(g(n)) = { f(n) : there exist positive constants c1, c2 and n0 such that

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0 }

 Because Θ(g(n)) is a set, we could write f(n) € Θ(g(n)) to indicate that f(n) is a member of Θ(g(n)).

 This notation bounds a function to within constant factors. We say f(n) = Θ(g(n)) if there exist
positive constants n0, c1 and c2 such that to the right of n0 the value of f(n) always lies between c1g(n)
and c2g(n) inclusive.

 Figure a gives an intuitive picture of functions f(n) and g(n). For all values of n to the right of n0, the

value of f(n) lies at or above c1g(n) and at or below c2g(n). In other words, for all n ≥ n0, the value of
f(n) is equal to g(n) to within a constant factor.

 We say that g(n) is an asymptotically tight bound for f(n).

O-Notation (Upper Bound)

 For a given function g(n), we denote by Ο(g(n)) the set of functions

Ο(g(n)) = { f(n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0 }

 We use Ο notation to give an upper bound on a function, to within a constant factor. For all values of

 Unit 2- Analysis of Algorithm

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

n to the right of n0, the value of the function f(n) is on or below g(n).

 This notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n))
if there are positive constants n0 and c such that to the right of n0, the value of f(n) always lies on or
below cg(n).

 We say that g(n) is an asymptotically upper bound for f(n).

 Example:

Let f(n)=n2 and g(n)=2n

n f(n)=n2 g(n)=2n

1 1 2 f(n) < g(n) Here for n ≥ 4 we have

behavior f (n) ≤ g(n)

Where n0=4
2 4 4 f(n) = g(n)

3 9 8 f(n) > g(n)

4 16 16 f(n) = g(n)

5 25 32 f(n) < g(n)

6 36 64 f(n) < g(n)

7 49 128 f(n) < g(n)

Ω-Notation (Lower Bound)

 For a given function g(n), we denote by Ω(g(n)) the set of functions

Ω (g(n)) = { f(n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n)for all n ≥ n0 }

 Ω Notation provides an asymptotic lower bound. For all values of n to the right of n0, the value of

the function f(n) is on or above cg(n).

 This notation gives a lower bound for a function to within a constant factor. We write f(n) = Ω(g(n)) if
there are positive constants n0 and c such that to the right of n0, the value of f(n) always lies on or

above cg(n).

 Unit 2- Analysis of Algorithm

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 Example:
Let f(n)= 2n and g(n)= n2

n f(n)= 2n g(n)= n2

1 2 1 f(n) > g(n) Here for n ≥ 4 we have
behavior f (n) ≥ g(n)

Where n0=4
2 4 4 f(n) = g(n)

3 8 9 f(n) < g(n)

4 16 16 f(n) = g(n)

5 32 25 f(n) > g(n)

6 64 36 f(n) > g(n)

7 128 49 f(n) > g(n)

(5) Analyzing Control Statement

Example: 1
 C1: b = a * c
Here cost of C1= O(1) as it executes once

Example: 2

for i=1 to n

 b = a * c

C1: n+1 [executed n time + 1 time to check wrong

condition]

C2: n [executed n time]

T(n) =C1+C2

 =n+1+n = 2n+1
 =O(n)

 Unit 2- Analysis of Algorithm

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example: 3

for i=1 to n

 for j=1 to n

 b = a * c

 end

end

C1: n+1

C2: n+1
n

C3: n

T(n) =C1+C2 +C3
 =n+1+n(n+1)+n(n) = 2n2+2n+1
 =O(n2)

(6) Insertion sort
 Insertion Sort works by inserting an element into its appropriate position during each iteration.
 Insertion sort works by comparing an element to all its previous elements until an appropriate

position is found.
 Whenever an appropriate position is found, the element is inserted there by shifting down remaining

elements.

Algorithm

Analysis
 The running time of an algorithm on a particular input is the number of primitive operations or

"steps" executed.

 A constant amount of time is required to execute each line of our pseudo code. One line may take a
different amount of time than another line, but we shall assume that each execution of the ith line
takes time ci, where ci is a constant.

 The running time of the algorithm is the sum of running times for each statement executed; a

statement that takes ci steps to execute and is executed n times will contribute cin to the total
running time.

 Let the time complexity of selection sort is given as T(n), then
T(n) = C1n+ C2(n-1)+ C3(n-1)+ C4(∑)

 +(C5 +C6) ∑
 + C7(n-1).

Procedure insert (T[1….n]) cost times

 for i ← 2 to n do C1 n

 x ← T[i] C2 n-1

 j ← i - 1 C3 n-1

 while j > 0 and x < T[j] do C4 ∑

 T[j+1] ← T[j] C5 ∑
 -1

 j ← j - 1

 end

C6 ∑
 -1

 T[j + 1] ← x

 end

C7 n-1

 Unit 2- Analysis of Algorithm

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Where,

∑

 ∑

Best case:
Take j= 1

T(n) = C1n + C2(n-1) + C3(n-1) + C4(n-1) + C5 (n-1)+ c7(n-1)

 = (C1+C2+C3+C4+C7) n (C2+C3+C4+C7)

 = an b

 Thus, T(n) = Θ(n)

Worst case: Take j =n

T (n) = C1n+ C2(n-1)+ C3(n-1)+ C4(∑)
 +(C5 +C6) ∑

 + C7(n-1).

 = C1n+ C2n+ C3n+ C4

 +C5

+ C6

+ C4

+ C5

+ C6

+ C7n-C2-C3- C7.

 = n2(C4

+ C5

+ C6

)+n(C1 +C2 +C3 +C7 + C4

+ C5

+ C6

)-1(C2 +C3 +C7).

 = an2
 + bn + c.

Thus, T(n) = Θ(n2)

Average case: Average case will be same as worst case T(n) = Θ(n2)

Time complexity of insertion sort

Best case Average case Worst case
O(n) O (n2) O (n2)

 Unit 2- Analysis of Algorithm

 8

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example:

(7) Loop Invariant and the correctness of algorithm
We use loop invariants to help us understand why an algorithm is correct. We must show three things
about a loop invariant:

1) Initialization: It is true prior to the first iteration of the loop.
2) Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
3) Termination: When the loop terminates, the invariant gives us a useful property that helps show

that the algorithm is correct.

 When the first two properties hold, the loop invariant is true prior to every iteration of the loop.

 Note the similarity to mathematical induction, where to prove that a property holds, you prove a
base case and an inductive step.

 Here, showing that the invariant holds before the first iteration is like the base case, and showing
that the invariant holds from iteration to iteration is like the inductive step.

 The third property is perhaps the most important one, since we are using the loop invariant to show
correctness.

 It also differs from the usual use of mathematical induction, in which the inductive step is used

infinitely; here, we stop the "induction" when the loop terminates.

 Unit 2- Analysis of Algorithm

 9

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(8) Bubble sort
 In the bubble sort, the consecutive elements of the table are compared and if the keys of the two

elements are not found in proper order, they are interchanged.

 It starts from the beginning of the table and continue till the end of the table. As a result of this the
element with the largest key will be pushed to the last element’s position.

 After this the second pass is made. The second pass is exactly like the first one except that this time

the elements except the last are considered. After the second pass, the next largest element will be
pushed down to the next to last position.

Algorithm

Analysis

T(n)=C1 (n+1) + C2 ∑ ()

 + C3 ∑ ()

 + C4 ∑ ()

Best case:
Take i = 1

T(n) = C1n + C1+ C2n + C3n – C3 + C4 n – C4

 = (C1+C2+C3+C4) n (C2,C3,C4,C7)

 = an b

 Thus, T(n) = Θ(n)

Worst Case:

= C1n+ C1 + C2 n+ C2 –C2 (
 ()

) + C3n – C3 (

 ()

) +C4n – C4 (

 ()

)

= [–C2/n2–C3/n2–C4/n2] +[– C2/n–C3/n–C4/n]+C1+C2+C3+C4

= an2+bn+c
= Θ (n2)

Average case: Average case will be same as worst case T(n) = Θ(n2)

Example:
Consider the following numbers are stored in an array:
Original Array: 32,51,27,85,66,23,13,57

Pass 1 : 32,27,51,66,23,13,57,85
Pass 2 : 27,33,51,23,13,57,66,85
Pass 3 : 27,33,23,13,51,57,66,85

Pass 4 : 27,23,13,33,51,57,66,85

Procedure bubble (T[1….n]) cost times

for i ← 1 to n do C1 n+1

for i ← 1 to n-i do C2 ∑ ()

if T[i] > T[j] C3 ∑ ()

T[i] ↔ T[j] C4 ∑ ()

 end

end

 Unit 2- Analysis of Algorithm

 10

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Pass 5 : 23,13,27,33,51,57,66,85
Pass 6 : 13,23,27,33,51,57,66,85

(9) Selection sort
 Selection Sort works by repeatedly selecting elements.

 The algorithm finds the smallest element in the array first and exchanges it with the element in the first
position.

Then it finds the second smallest element and exchanges it with the element in the second position and continues
in this way until the entire array is sorted.

Algorithm

Procedure select (T [1….n]) Cost times

 for i←1 to n-1 do C1 n

 minj ← i ; minx ← T[i] C2 n-1

 for j←i+1 to n do C3 ∑ ()

 if T[j] < minx then minj ← j C4 ∑

 minx ← T[j] C5 ∑

 T[minj] ← T[i] C6 n-1

 T[i] ← minx C7 n-1

 Analysis

T(n)=C1n+ C2(n-1)+ C3(∑ ())
 C4(∑ ())

 +C5(∑ ()
)+C6(n-1)+ C7(n-1)

 = C1n+ C2n+ C6n+ C7n+ C3

 +C4

+ C5

+ C3

+ C4

+ C5

-C2-C6-C7

 =n(C1+ C2+ C6 +C7 + C3

+ C4

+ C5

) + n2(C3

+ C4

+ C5

)-1(C2+ C6 +C7)

 = an2+bn+c

Time complexity of insertion sort
Best case Average case Worst case

O(n2) O (n2) O (n2)

 Unit 2- Analysis of Algorithm

 11

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example:

(10) Heap
 A heap data structure is a binary tree with the following properties.

1. It is a complete binary tree; that is each level of the tree is completely filled, except possibly the

bottom level. At this level it is filled from left to right.

2. It satisfies the heap order property; the data item stored in each node is greater than or equal to

the data item stored in its children node.

Example:

 Heap can be implemented using an array or a linked list structure. It is easier to implement heaps
using arrays.

 We simply number the nodes in the heap from top to bottom, numbering the nodes on each level
from left to right and store the ith node in the ith location of the array.

9

8 4

6 2 3

 Unit 2- Analysis of Algorithm

 12

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 An array A that represents a heap is an object with two attributes:

i. length[A], which is the number of elements in the array, and

ii. heap-size[A], the number of elements in the heap stored within array A.

 The root of the tree is A[1], and given the index i of a node, the indices of its parent PARENT(i), left
child LEFT(i), and right child RIGHT(i) can be computed simply:

PARENT(i)

 return ⌊i/2⌋

LEFT(i)

 return 2i

RIGHT(i)

 return 2i + 1

Example:

 The array form for the above heap is,

23 17 14 6 13 10 1 5 7 12

 There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the

nodes satisfy a heap property.

 In a max-heap, the max-heap property is that for every node i other than the root, A[PARENT(i)] ≥
A[i] ,

 That is, the value of a node is at most the value of its parent. Thus, the largest element in a max-heap
is stored at the root, and the sub-tree rooted at a node contains values no larger than that contained

at the node itself.

 A min-heap is organized in the opposite way; the min-heap property is that for every node i other

than the root, A[PARENT(i)] ≤ A[i] .

 The smallest element in a min-heap is at the root.

 For the heap-sort algorithm, we use max-heaps. Min-heaps are commonly used in priority Queues.

 Viewing a heap as a tree, we define the height of a node in a heap to be the number of edges on the

10 9 8

7 6 5 4

3 2

1 23

17 14

6 10 13 1

5 7 12

 Unit 2- Analysis of Algorithm

 13

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

longest simple downward path from the node to a leaf, and we define the height of the Heap to be
the height of its root.

 Height of an n element heap based on a binary tree is lg n

 The basic operations on heap run in time at most proportional to the height of the tree and thus take
O(lg n) time.

 Since a heap of n elements is a complete binary tree which has height k; that is one node on level k,
two nodes on level k-1 and so on…

 There will be 2k-1 nodes on level 1 and at least 1 and not more than 2k nodes on level 0.

Building a heap

 For the general case of converting a complete binary tree to a heap, we begin at the last node that is
not a leaf; apply the “percolate down” routine to convert the subtree rooted at this current root
node to a heap.

 We then move onto the preceding node and percolate down that subtree.

 We continue on in this manner, working up the tree until we reach the root of the given tree.

 We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array A*1,…,n], where

n = length[A], into a max-heap.

 The elements in the sub-array A[(⌊n/2⌋+1),…, n] are all leaves of the tree, and so each is a 1-element

heap to begin with.

 The procedure BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs
MAXHEAPIFY on each one.

Algorithm

BUILD-MAX-HEAP(A)

heap-size[A] ← length[A]

for i ← ⌊length[A]/2⌋ downto 1

 do MAX-HEAPIFY(A, i)

Analysis

 Each call to Heapify costs O(lg n) time, and there are O(n) such calls. Thus, the running time is at
most O(n lg n)

Maintaining the heap property

 One of the most basic heap operations is converting a complete binary tree to a heap. Such an
operation is called Heapify.

 Its inputs are an array A and an index i into the array. When MAX-HEAPIFY is called, it is assumed
that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but that A[i] may be smaller than

its children, thus violating the max-heap property.

 The function of MAX-HEAPIFY is to let the value at A[i] "float down" in the max-heap so that the sub-
tree rooted at index i becomes a max-heap.

 Unit 2- Analysis of Algorithm

 14

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Algorithm

MAX-HEAPIFY(A, i)

l ← LEFT(i)

r ← RIGHT(i)

if l ≤ heap-size[A] and A[l] > A[i]

 then largest ← l

else largest ← i

if r ≤ heap-size[A] and A[r] > A[largest]

 then largest ← r

if largest ≠ i

 then exchange A[i+ ↔ A[largest]

MAX-HEAPIFY(A, largest)

 At each step, the largest of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its index

is stored in largest.

 If A[i] is largest, then the sub-tree rooted at node i is a max-heap and the procedure terminates.

 Otherwise, one of the two children has the largest element, and A[i] is swapped with A[largest],
which causes node i and its children to satisfy the max-heap property.

 The node indexed by largest, however, now has the original value A[i], and thus the sub-tree rooted
at largest may violate the max-heap property. therefore, MAX-HEAPIFY must be called recursively on
that sub-tree.

Analysis

 The running time of MAX-HEAPIFY on a sub-tree of size n rooted at given node i is the Θ(1) time to fix
up the relationships among the elements A[i], A[LEFT(i)], and A[RIGHT(i)], plus the time to run MAX-

HEAPIFY on a sub-tree rooted at one of the children of node i.

 The children's sub-trees can have size of at most 2n/3 and the running time of MAX-HEAPIFY can
therefore be described by the recurrence

T (n) ≤ T(2n/3) + Θ(1).

 The solution to this recurrence is T (n) = O (lg n).

Heap sort
 The heap sort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input array

A*1,…, n], where n = length[A].

 Since the maximum element of the array is stored at the root A[1], it can be put into its correct final

position by exchanging it with A[n].

 If we now "discard" node n from the heap (by decrementing heap-size[A]), we observe that A*1,…, (n
- 1)] can easily be made into a max-heap.

 The children of the root remain max-heaps, but the new root element may violate the max-heap
property.

 Unit 2- Analysis of Algorithm

 15

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 All that is needed to restore the max heap property, however, is one call to MAX-HEAPIFY(A, 1),
which leaves a max-heap in A*1,…, (n - 1)].

 The heap sort algorithm then repeats this process for the max-heap of size n – 1 down to a heap of
size 2.

Algorithm
HEAPSORT(A)

 BUILD-MAX-HEAP(A)

 for i ← length[A] downto 2

 do exchange A[1] ↔ A[i]

 heap-size[A] ← heap-size[A] - 1

 MAX-HEAPIFY(A, 1)

 The HEAPSORT procedure takes time O(n lg n), since the call to BUILD-MAX-HEAP takes time O(n) and
each of the n - 1 calls to MAX-HEAPIFY takes time O(lg n).

Example

Here is the array: 6, 5, 3, 1, 8, 7, 2, 4
Creating Max Heap. Inserting Node 6 in left to right
top to bottom manner

Inserting Node 5 in left to right top to bottom manner

Inserting Node 3 in left to right top to bottom

manner

Inserting Node 7 in left to right top to bottom manner

 Unit 2- Analysis of Algorithm

 16

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Inserting Node 8 in left to right top to bottom

manner

Heapify node 8

Heapify node 8 and swap with node 5 Heapify node 8

Heapify node 8 and swap with node 6 Inserting Node 7 in left to right top to bottom manner

Heapify node 7 Heapify node 7 and swap with node 3.

 Unit 2- Analysis of Algorithm

 17

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Inserting Node 2 in left to right top to bottom

manner

Inserting Node 4 in left to right top to bottom manner

Heapify node 4 Array representation of MAX heap

Select first node and swap with last node

Select first node 8 and swap with last node 1

Decrease size of heap by one Heapify new array

 Unit 2- Analysis of Algorithm

 18

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Heapify new array swap node 7 with node 1.

Heapify new array swap node 7 with node 1.

Select first node and swap with last node

Select first node and swap with last node

Decrease size of heap by one Heapify node 2 and node 6

Swap node 6 and node 2 Heapify node 5 and node 2

Swap node 5 with node 2 Select first node 6 and last node 1

 Unit 2- Analysis of Algorithm

 19

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Swap first node 6 with last node 1

Decrease size of heap by one

Heapify node 5 and node 1 Swap node 5 with node 1

Heapify node 1 with node 4 Swap node 4 with node 1

Select first node 5 and last node 2 Swap first node 5 and last node 2

Decrease size of heap by one

 heapify

Heapify node 4 and node 2

 Unit 2- Analysis of Algorithm

 20

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Swap node 4 with node 2 Select first node 4 and last node 1

Swap first node 4 with last node 1 Decrease size of heap by one

Heapify node 1 and node 3 Swap node 3 with node 1

Select first node 3 and last node 1 and swap it Decrease size of heap by one

Heapify node 2 and node 1 Select first and last
element and swap
it

 Unit 2- Analysis of Algorithm

 21

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Decrease size of heap by one

Sorted array

(11) Shell sort
 Shell sort works by comparing elements that are distant rather than adjacent elements in an array.
 Shell sort uses a sequence h1, h2… ht called the increment sequence. Any increment sequence is fine

as long as h1 = 1 and some other choices are better than others.
 Shell sort makes multiple passes through a list and sorts a number of equally sized sets using the

insertion sort.

Example:1 54,26,93,17,77,31,44,55,20

Sorted array: 17,20,26,31,44,54,55,77,93

Example:2 3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2
 It is arranged in an array with 7 columns (left), then the columns are sorted (right):

Step-1
3 7 9 0 5 1 6 3 3 2 0 5 1 5

8 4 2 0 6 1 5 7 4 4 0 6 1 6
7 3 4 9 8 2 8 7 9 9 8 2

Step-2

3 3 2 0 0 1
0 5 1 1 2 2

5 7 4 3 3 4

4 0 6 4 5 6

1 6 8 5 6 8
7 9 9 7 7 9
8 2 8 9

54 26 93
17 77 31
44 55 20

26 54 93
17 31 77
20 44 55

17 31 55
20 44 77
26 54 93

Row by Row Column by Column

 Unit 2- Analysis of Algorithm

 22

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(12) Bucket sort
 Bucket sort runs in linear time when the input is drawn from a uniform distribution.

 Like counting sort, bucket sort is fast because it assumes something about the input.
 Whereas counting sort assumes that the input consists of integers in a small range, bucket sort

assumes that the input is generated by a random process that distributes elements uniformly over
the interval [0, 1)

Assumption: the keys are in the range [0, N)
Basic idea:

1. Create N linked lists (buckets) to divide interval [0,N) into subintervals of size 1
2. Add each input element to appropriate bucket

3. Concatenate the buckets

Expected total time is O(n + N), with n = size of original sequence if N is O(n) -> sorting algorithm in O(n) !

Algorithm
BUCKET-SORT(A)

1 n ← length[A]

2 for i ← 1 to n

3 do insert A[i] into list B[⌊n A[i]⌋]
4 for i ← 0 to n - 1

5 do sort list B[i] with insertion sort

6 concatenate the lists B[0], B[1], . . ., B[n - 1] together in

order

Example: 45,96,29,30,27,12,39,61,91
Step-1 Add keys one by one in appropriate bucket queue as shown in figure
Step-2 sort each bucket queue with insertion sort

Step-3 Merge all bucket queues together in order

After sorting : 12,27,29, 30, 39, 45, 61, 91, 96

0

1

2

3

4

5

6

7

8

9

27

12

29

30 39

45

61

96 91

 Unit 2- Analysis of Algorithm

 23

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(13) Radix sort
 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The

remaining columns show the list after successive sorts on increasingly significant digit positions.

 Shading indicates the digit position sorted on to produce each list from the previous one.

 The code for radix sort is straightforward. The following procedure assumes that each element in the
n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest order

digit.
 Given n d-digit numbers in which each digit can take on up to k possible values, RADIXSORT correctly

sorts these numbers in Θ(d(n+ k)) time.

Algorithm
RADIX-SORT(A, d)

1 for i ← 1 to d

2 do use a stable sort to sort array A on digit i

Example: 363, 729, 329, 873, 691, 521, 435, 297

 3 6 3

 7 2 9

 3 2 9

 6 9 1

 8 7 3

 2 9 7

 5 2 1

 4 3 5

Sort
Column-1

 6 9 1

 5 2 1

 3 6 3

 4 3 5

 8 7 3

 3 2 9

 2 9 7

 7 2 9

Sort
Column-2

 5 2 1

 7 2 9

 3 2 9

 3 6 3

 4 3 5

 2 9 7

 8 7 3

 6 9 1

Sort
Column-3

 2 9 7

 3 2 9

 3 6 3

 5 2 1

 4 3 5

 8 7 3

 6 9 1

 7 2 9

 Unit 2- Analysis of Algorithm

 24

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(14) Counting sort
 Counting sort assumes that each of the n input elements is an integer in the range 0 to k, for some

integer k.

 When k = O(n), the sort runs in Θ(n) time.

 The basic idea of counting sort is to determine, for each input element x, the number of elements
less than x.

 This information can be used to place element x directly into its position in the output array.

Algorithm

COUNTING-SORT(A, B, k)

 1 for i ← 0 to k

 2 do C[i] ← 0

 3 for j ← 1 to length[A]

 4 do C[A[j]] ← C[A[j]] + 1

 5 //C[i] now contains the number of elements equal to i.

 6 for i ← 1 to k

 7 do C[i] ← C[i] + C[i - 1]

 8 //C[i] now contains the number of elements less than or equal
to i.

 9 for j ← length[A] down to 1

10 do B[C[A[j]]] ← A[j]

11 C[A[j]] ← C[A[j]] – 1

Example

Step-1 Given input array A*1…8+
1 2 3 4 5 6 7 8

3 6 4 1 3 4 1 4

Step-2 Determine size of array C as maximum value in array A, here its ‘6’
Initialize all elements intermediate array C*1…6+ = 0

1 2 3 4 5 6

0 0 0 0 0 0

Step-3 Update array C with occurrences of each value of array A

1 2 3 4 5 6

2 0 2 3 0 1

Step-4 In array C from index 2 to n add value with previous element

1 2 3 4 5 6

2 2 4 7 7 8

Create output array B*1…8+
Start positioning elements of Array A to B shown as follows

 Unit 2- Analysis of Algorithm

 25

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Step-5 Array A
1 2 3 4 5 6 7 8

3 6 4 1 3 4 1 4

Array C

1 2 3 4 5 6

2 2 4 7 7 8

Array B

1 2 3 4 5 6 7 8

 4

Repeat above from element n to 1 we can have
Array B

1 2 3 4 5 6 7 8

1 1 3 3 4 4 4 0

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 1

(1) Divide & Conquer Technique and the general template for it.

Divide and conquer technique

 Many useful algorithms are recursive in structure: to solve a given problem, they call themselves
recursively one or more times to deal with closely related sub problems.

 These algorithms typically follow a divide-and-conquer approach:

 The divide-and-conquer approach involves three steps at each level of the recursion:

 Divide: Break the problem into several sub problems that are similar to the original problem
but smaller in size,

 Conquer: Solve the sub problems recursively, and If the sub problem sizes are small enough, just
solve the sub problems in a straightforward manner.

 Combine: Combine these solutions to create a solution to the original problem.

The general template

 Consider an arbitrary problem, and let adhoc be a simple algorithm capable of solving the
problem.

 We call adhoc as basic sub-algorithm such that it can be efficient in solving small instances, but
its performance on large instances is of no concern.

 The general template for divide-and-conquer algorithms is as follows.
function DC(x)

if x is sufficiently small or simple then return adhoc(x)
decompose x into smaller instances x1 , x2, …, xl
for i = 1 to l do yi DC(xi)
recombine the YL 's to obtain a solution y for x

return y

 The running-time analysis of such divide-and-conquer algorithms is almost automatic.

 Let g(n) be the time required by DC on instances of size n, not counting the time needed for the
recursive calls.

 The total time t(n) taken by this divide-and-conquer algorithm is given by Recurrence equation,

Provided n is large enough.

 The solution of equation is given as,

then

 The recurrence equation and its solution are applicable to find the time complexity of every

problem which can be solved using Divide & Conquer Technique.

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 2

(2) Linear Search

Sequential (Linear) search algorithm

Function sequential (T[1,…,n], x)

for i = 1 to n do

 if T [i] ≥ x then return index i

 return n + 1

Analysis

 Here we look sequentially at each element of T until either we reach to end of the array or find a
number no smaller than x.

 This algorithm clearly takes time in Θ (r), where r is the index returned. Θ (n) in worst case and O
(1) in best case.

(3) Divide and Conquer Technique and the use of it for Binary

Searching Method.

Binary Search Method

 Binary Search is an extremely well-known instance of divide-and-conquer approach.

 Let T[1 . . . n] be an array of increasing sorted order; that is T [i] ≤ T [j] whenever 1 ≤ i ≤ j ≤ n.

 Let x be some number. The problem consists of finding x in the array T if it is there.

 If x is not in the array, then we want to find the position where it might be inserted.

Binary Search Algorithm (Iterative)

 The basic idea of binary search is that for a given element we check out the middle element of
the array.

 We continue in either the lower or upper segment of the array, depending on the outcome of
the search until we reach the required (given) element.

 Here the technique Divide & Conquer applies. Total number of elements to be searched is
divided in half size every time.

Function biniter (T[1,…,n], x)

i ← 1; j ← n

while i < j do

k ← (i + j) ÷ 2

if x ≤ T [k] then j ← k

 else i ← k + 1

return i

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 3

Analysis

 To analyze the running time of a while loop, we must find a function of the variables involved
whose value decreases each time round the loop.

 Here it is j – i + 1

 Which we call as d. d represents the number of elements of T still under consideration.

 Initially d = n.

 Loop terminates when i ≥ j, which is equivalent to d ≤ 1

 Each time round the loop there are three possibilities,
I. Either j is set to k – 1

II. Or i is set to k + 1
III. Or both i and j are set to k

 Let d and d’ stand for the value of j – i +1 before and after the iteration under consideration.
Similarly i, j , i’ and j’.

 Case I : if x < T [k]
So, j ← k – 1 is executed.
Thus i’ = i and j’ = k -1 where k = (i + j) ÷ 2
Substituting the value of k, j’ = [(i + j) ÷ 2] – 1
d’ = j’ – i’ + 1
Substituting the value of j’, d’ = [(i + j) ÷ 2] – 1 – i + 1
 d’ ≤ (i + j) /2 – i
d’ ≤ (j – i)/2 ≤ (j – i + 1) / 2
d’ ≤ d/2

 Case II : if x > T [k]
So, i ← k + 1 is executed
Thus i’ = K + 1 and j’ = j where k = (i + j) ÷ 2
Substituting the value of k, i’ = [(i + j) ÷ 2] + 1
d’ = j’ – i’ + 1
Substituting the value of I’, d’ = j - [(i + j) ÷ 2] + 1 + 1
 d’ ≤ j - (i + j -1) /2 ≤ (2j – i – j + 1) / 2 ≤ (j – i + 1) / 2
d’ ≤ d/2

 Case III : if x = T [k]
i = j → d’ = 1

 We conclude that whatever may be case, d’ ≤ d/2 which means that the value of d is at least
getting half each time round the loop.

 Let dk denote the value of j – i + 1 at the end of kth trip around the loop. d0 = n.

 We have already proved that dk = dk -1 / 2

 For n integers, how many times does it need to cut in half before it reaches or goes below 1?

 n / 2k ≤ 1 → n ≤ 2k

 k = lgn , search takes time.
The complexity of biniter is Θ (lg n).

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 4

Binary Search Algorithm (Recursive)

Function binsearch (T[1,…,n], x)

if n = 0 or x > T[n] then return n + 1

else return binrec (T[1,…,n], x)

Function binrec(T[i,…,j], x)

if i = j then return i

k ← (i + j) ÷ 2

if x ≤ T [k] then return binrec(T[i,…,k], x)

 else return binrec(T[k + 1,…,j], x)

Analysis

 Let t(n) be the time required for a call on binrec(T[i,…,j], x), where n = j – i + 1 is the number of
elements still under consideration in the search.

 The recurrence equation is given as,
t(n) = t(n/2) + Θ(1)
Comparing this to the general template for divide and conquer algorithm, l = 1, b = 2 and k = 0.
So, t(n) Є Θ(lg n)

 The complexity of binrec is Θ (lg n).

(4) Merge Sort and Analysis of Merge Sort

 The divide & conquer approach to sort n numbers using merge sort consists of separating the
array T into two parts where sizes are almost same.

 These two parts are sorted by recursive calls and then merged the solution of each part while
preserving the order.

 The algorithm considers two temporary arrays U and V into which the original array T is divided.

 When the number of elements to be sorted is small, a relatively simple algorithm is used.

 Merge sort procedure separates the instance into two half sized sub instances, solves them
recursively and then combines the two sorted half arrays to obtain the solution to the original
instance.

Algorithm for merging two sorted U and V arrays into array T

Procedure merge(U[1,…,m+1],V[1,…,n+1],T[1,…,m+n])

 i, j ← 1

 U[m+1], V[n+1] ← ∞

 for k ← 1 to m + n do

 if U[i] < V[j]

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 5

 then T[k] ← U[i] ; i ← i + 1

 else T[k] ← V[j] ; j ← j + 1

Algorithm merge sort

Procedure mergesort(T[1,…,n])

 if n is sufficiently small then insert(T)

 else

 array U[1,…,1+n/2],V[1,…,1+n/2]

 U[1,…,n/2] ← T[1,…,n/2]

 V[1,…,n/2] ← T[n/2+1,…,n]

 mergesort(U[1,…,n/2])

 mergesort(V[1,…,n/2])

 merge(U, V, T)

Analysis

 Let T(n) be the time taken by this algorithm to sort an array of n elements.

 Separating T into U & V takes linear time; merge (U, V, T) also takes linear time.

 Now,

T(n)=T(n/2)+ T(n/2)+g(n) where g(n) ϵ Θ(n).

T(n) = 2t(n/2)+ Θ (n)
Applying the general case, l=2, b=2, k=1

Since l = bk the second case applies which yields t(n) ϵ Θ(nlogn).

Time complexity of merge sort is Θ (nlogn).

Example

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 6

(5) Quick sort method / algorithm and its complexity.

 Quick sort works by partitioning the array to be sorted.

 Each Partition is internally sorted recursively.

 As a first step, this algorithm chooses one element of an array as a pivot or a key element.

 The array is then partitioned on either side of the pivot.

 Elements are moved so that those greater than the pivot are shifted to its right whereas the
others are shifted to its left.

 Two pointers low and up are initialized to the lower and upper bounds of the sub array.

 Up pointer will be decremented and low pointer will be incremented as per following condition.
1. Increase low pointer until T[low] > pivot.
2. Decrease up pointer until T[up] ≤ pivot.
3. If low < up then interchange T[low] with T[up].
4. If up ≤ low then interchange T[up] with T[i].

Algorithm
Procedure pivot(T[i,…,j]; var l)
{Permutes the elements in array T[i,…,j] and returns a value l such that, at the end, i<=l<=j,
T[k]<=p for all i ≤ k < l, T[l]=p, And T[k] > p for all l < k ≤ j, where p is the initial value T[i]}
P ← T[i]
K ← i; l ← j+1
Repeat k ← k+1 until T[k] > p
Repeat l ← l-1 until T[l] ≤ p
While k < l do
 Swap T[k] and T[l]
 Repeat k ← k+1 until T[k] > p
 Repeat l ← l-1 until T[l] ≤ p
Swap T[i] and T[l]

Procedure quicksort(T[i,…,j])
{Sorts subarray T[i,…,j] into non decreasing order}
if j – i is sufficiently small then insert (T[i,…,j])
else
 pivot(T[i,…,j],l)
quicksort(T[i,…, l - 1])
quicksort(T[l+1,…,j]

Analysis

1. Worst Case

 Running time of quick sort depends on whether the partitioning is balanced or unbalanced.

 And this in turn depends on which element is chosen as key or pivot element.

 The worst case behavior for quick sort occurs when the partitioning routine produces one
sub problem with n-1 elements and one with 0 elements.

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 7

 In this case recurrence will be,
T(n)=T(n-1)+T(0)+Θ(n)
 T(n)=T(n-1)+ Θ (n)
 T(n)= Θ (n2)

2. Best Case

 Occurs when partition produces sub problems each of size n/2.

 Recurrence equation:
T(n)=2T(n/2)+ Θ(n)
l = 2, b = 2, k = 1, so l = bk
T(n)= Θ(nlogn)

3. Average Case

 Average case running time is much closer to the best case.

 If suppose the partitioning algorithm produces a 9-to-1 proportional split the recurrence will
be

T(n)=T(9n/10)+ T(n/10)+ Θ(n)
 Solving it,
 T(n)= Θ(nlogn)

 The running time of quick sort is therefore Θ(nlogn) whenever the split has constant
proportionality.

Example

[1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 80 60 50 7 30 100

Pivot,i

j

Here, Pivot = T[i], k = i, l = j + 1

Repeat k = k + 1, Until T[k] > Pivot

 Repeat l = l – 1, Until T[l] <= Pivot

[1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 80 60 50 7 30 100

Pivot

k

l

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 8

Is K < l ? , Yes then Swap T[k] <-> T[l]

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 30 60 50 7 80 100

Pivot

k

l

Repeat k = k + 1, Until T[k] > Pivot

 Repeat l = l – 1, Until T[l] <= Pivot

[1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 30 60 50 7 80 100

Pivot

k

l

Is K < l ? , Yes then Swap T[k] <-> T[l]

[1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 30 7 50 60 80 100

Pivot

k

l

Repeat k = k + 1, Until T[k] > Pivot

 Repeat l = l – 1, Until T[l] <= Pivot

[1] [2] [3] [4] [5] [6] [7] [8] [9]

40 20 10 30 7 50 60 80 100

Pivot

l

k

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 9

Is K < l ? , No then Swap Pivot <-> T[l]

[1] [2] [3] [4] [5] [6] [7] [8] [9]

7 20 10 30 40 50 60 80 100

Pivot

Now we have two sub list one having elements less or equal Pivot and second

having elements greater than Pivot

[1] [2] [3] [4] [5] [6] [7] [8] [9]

7 20 10 30 40 50 60 80 100

Pivot,i

j

Pivot,i

j

Repeat the same procedure for each sub list until list is sorted

(6) Multiplying two n digit large integers using divide and conquer

method

 Consider the problem of multiplying large integers.

 Following example shows how divide and conquer helps multiplying two large integers.

 Multiplication of 981 by 1234. First we pad the shorter operand with a non- significant zero to
make it the same length as the longer one; thus 981 become 0981.

 Then we split each operand into two parts:

 0981 gives rise to w = 09 and x = 81, and 1234 to y = 12 and z = 34.

 Notice that 981 = 102W + x and 1234 = 102y + z.

 Therefore, the required product can be computed as
981 x 1234 = (102w + x) * (102y + z)

= 104wy + 102(wz + xy) + xz
= 1080000 + 127800 + 2754 = 1210554.

 The above procedure still needs four half-size multiplications: wy, wz, xy and xz.

 There is no need to compute both wz and xy; all we really need is the sum of the two terms,
consider the product

r = (w + x) x (y + z) = wy + (wz + xy) + xz.

 After only one multiplication, we obtain the sum of all three terms needed to calculate the
desired product.

 This suggests proceeding as follows.

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 10

p = wy = 09 x 12 =108
q = xz = 81 x 34 = 2754
r = (w + x) x (y + z) =90x46 = 4140,

 and finally
981 x 1234 = 104p + 102 (r - p - q) + q
= 1080000 + 127800 + 2754 1210554.

 Thus the product of 981 and 1234 can be reduced to three multiplications of two-figure
numbers (09 x 12, 81 x 34 and 90 x 46) together with a certain number of shifts (multiplications
by powers of 10), additions and subtractions.

 It thus seems reasonable to expect that reducing four multiplications to three will enable us to
cut 25% of the computing time required for large multiplications.

 We obtain an algorithm that can multiply two n-figure numbers in a time,
T(n)= 3t (n /2) + g(n), when n is even and sufficiently large.

 Solving it gives,

(7) Multiplying two square matrices and Strassen’s Algorithm for

matrix multiplication

 Consider the problem of multiplying two n × n matrices. Computing each entry in the product
takes n multiplications and there are n2 entries for a total of O(n3) work.

 Strassen devised a better method which has the same basic flavor as the multiplication of long
integers.

 The key idea is to save one multiplication on a small problem and then use recursion.

 First we show that two 2 x 2 matrices can be multiplied using less than the eight scalar
multiplications apparently required by the definition. Let A and B are two matrices to be
multiplied.

 Consider the following operations, each of which involves just one multiplication.

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 11

 The required product AB is given by the following matrix.

 It is therefore possible to multiply two 2 x 2 matrices using only seven scalar multiplications.

 Let t (n) be the time needed to multiply two n x n matrices by recursive use of equations.

 Assume for simplicity that n is a power of 2. Since matrices can be added and subtracted in a
time in 0(n2),

t(n)= 7t(n/2) + g(n)
 Where g (n) ϵ 0 (n2). This recurrence is another instance of our general analysis for divide-and-

conquer algorithms.

 The general equation applies with l = 7, b = 2 and k = 2.

 Since l > bk, the third case yields t(n) ϵ 0(nlg7).
 Square matrices whose size is not a power of 2 are easily handled by padding them with rows

and columns of zeros, at most doubling their size, which does not affect the asymptotic running
time.

 Since lg7 < 2.81, it is thus possible to multiply two n x n matrices in a time in 0(n2.81), provided

scalar operations are elementary.

(8) Exponentiation

 Let a and n be two integers. We wish to compute the exponentiation x = an. For simplicity,

assume that n > 0. If n is small, the obvious algorithm is adequate.

Exponentiation using Sequential Approach

function exposeq(a, n)

r a

for i 1 to n - 1 do

r a * r

return r

 This algorithm takes a time in Θ(n) since the instruction r a * r is executed exactly n-1 times,
provided the multiplications are counted as elementary operations.

 If we wish to handle larger operands, we must take account of the time required for each
multiplication.

 Let M(q, s) denote the time needed to multiply two integers of sizes q and s.

 Assume for simplicity that q1 ≤ q2 and s1 ≤ s2 imply that M(q1, s1) ≤ M(q2 ,s2).

 Let us estimate how much time our algorithm spends multiplying integers when exposeq(a, n)
is called.

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 12

 Let m be the size of a. First note that the product of two integers of size i and j is of size at least
i + j - 1 and at most i + j;

 Let ri and mi be the value and the size of r at the beginning of the i-th time round the loop.

 Clearly, r1 = a and therefore m1 = m.

 Since ri+1 = a * ri, the size of ri+1 is at least m + mi -1 and at most m + mi.

 Therefore, the multiplication performed the i-th time round the loop concerns an integer of
size m and an integer whose size is between im - i + 1 and im, which takes a time between
M(m, im - i + 1) and M(m, im).

 The total time T(m, n) spent multiplying when computing an with exposeq is therefore,

 Where m is the size of a. If we use the classic multiplication algorithm, then M (q, s) ϵ Θ (q

s).Let c be a constant such that M(q, s) ≤ c qs so,

 Thus T(m, n) ϵ Θ (m2 n2)

 If we use the divide-and-conquer multiplication algorithm, M(q, s) ϵ Θ (s qlg3) when s > q, and a

similar argument yields T(m, n) ϵ Θ (mlg3 n2).

Exponentiation using Divide & Conquer Technique

 The key observation for improving exposeq is that an = (an/ 2)2 when n is even. This yields the
following recurrence.

function expoDC(a, n)

if n = 1 then return a
if n is even then return [expoDC(a, n/2)]2
return a * expoDC(a, n - 1)

 To analyze the efficiency of this algorithm, we first concentrate on the number of
multiplications (counting squaring as multiplications) performed by a call on expoDC(a, n).

 The number of multiplications is a function only of the exponent n; let us denote it by N(n).

 No multiplications are performed when n = 1, so N(1)= 0.

 When n is even, one multiplication is performed (the squaring of an/2) in addition to the N(n/2)
multiplications involved in the recursive call on expoDC(a, n/2).

 3 – Divide & Conquer

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 13

 When n is odd, one multiplication is performed (that of a by an-1) in addition to the N(n -1)
multiplications involved in the recursive call on expoDC (a, n - 1). Thus we have the following
recurrence.

 To handle such a recurrence, it is useful to bind the function from above and below with non-

decreasing functions. When n > 1 is odd,
N(n)= N(n - 1) + 1 = N((n - 1)/2) + 2 = N([n/2])+2.

 On the other hand, when n is even, N(n)= N(n/2))+1 since Ln/2J = n/2 in that case. Therefore,

N(Ln/2˩) + 1 ≤ N(n) ≤ N(Ln/2˩) + 2

 for all n > 1.

 Let M (q, s) denote again the time needed to multiply two integers of sizes q and s, and let T(m,

n) now denote the time spent multiplying by a call on expoDC(a, n), where m is the size of a.

Recall that the size of ai is at most im.

 Inspection of the algorithm expoDC yields the following recurrence.

with the recurrence for N, this implies,

For all n > 1.

 Solving it gives,

 Where, α = 2 with classic multiplication algorithm and, α = lg3 with divide & conquer

 To summarize, the following table gives the time to compute an, where m is the size of a,
depending whether we use exposeq or expoDC, and whether we use the classic or divide-and-
conquer (D&C) multiplication algorithm.

 Classic D & C

exposeq

expoDC

 Unit-4 –Dynamic Programming

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) Introduction of dynamic programming
 Dynamic programming, like the divide-and-conquer method, solves problems by combining the

solutions to sub problems.

 Divide-and-conquer algorithms partition the problem into independent sub problems, solve the sub
problems recursively, and then combine their solutions to solve the original problem.

 In contrast, dynamic programming is applicable when the sub problems are not independent, that is,

when sub problems share sub problems.
 In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving

the common sub problems.
 A dynamic-programming algorithm solves every sub problem just once and then saves its answer in a

table, thereby avoiding the work of recomputing the answer every time the sub problem is
encountered.

 The development of a dynamic-programming algorithm can be broken into a sequence of four steps.
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

(2) Principle of optimality

 The dynamic programming algorithm obtains the solution using principle of optimality.

 The principle of optimality states that “in an optimal sequence of decisions or choices, each
subsequence must also be optimal”.

 When it is not possible to apply the principle of optimality it is almost impossible to obtain the
solution using the dynamic programming approach.

 The principle of optimality: “If k is a node on the shortest path from i to j, then the part of the path

from i to k, and the part from k to i, must also be optimal.”

(3) Binomial coefficient
Consider the problem of calculating binomial coefficient

(

) {

(

* (

*

Suppose 0 ≤ k ≤ n. if we calculate (

) directly by

function C(n, k)

 if k=0 or k=n then return 1

 else return C(n-1, k-1)+ C(n-1, k)

Many of the values C(i, j), i < n, j < k, are calculated over and over, for example the algorithm calculates

C(5,3) as sum of C(4,2) and C(4,3) Both these intermediate results require us to calculate C(3,2). Similarly
the value of C (2,2) is used several times.

 Unit-4 –Dynamic Programming

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(4) Making change problem using dynamic programming

Algorithm
function coins (N)

{Gives the minimum number og coins needed to make change for N units.

Array d[1..n] specifies the coinage: in the example there are coins for

1, 4 and 6 units.}

array d[1..n] =[1, 4, 6]

array c[1..n,0..N]

for i←1 to n do c[i,0]←0

for i←1 to n do

 for j←1 to N do

 c[i,j]←if i=1 and j < d[i] then +∞

 else if i=1 then 1+ c[1,j-d[1]]

 else if j < d[i] then c[i-1,j]

 else min (c[i-1,j],1+ c[1,j-d[i]]

return c[n,N]

 We need to generate table c[n][N]. Where,

 n= number of denominations. Here we are having 3 denomination so n=3.

 N= number of units that you need to make change. Here we need change of 8 units so N=8
 To generate table c[i][j] use following steps

Step-1: Make c[i][0]=0 for 0 < i ≤n

Step-2: Repeat step-2 to step-4 for remaining matrix Values

 if i=1 then c[i][j] = 1+c[1][j-d1], here d1=1

Step-3: if j<di then c[i][j] = c[i-1][j]

Step-4 otherwise c[i][j] = min(c[i-1][j],1+c[i][j-di]

 Example: Denominations: d1=1, d2=4, d3=6. Make a change of Rs. 8.

 c[i][j]=
i ↓ j → 0 1 2 3 4 5 6 7 8

1 d1=1 0 1 2 3 4 5 6 7 8

2 d2=4 0 1 2 3 1 2 3 4 2

3 d3=6 0 1 2 3 1 2 1 2 2

We need minimum C[3][8]=2 coins for change

 Unit-4 –Dynamic Programming

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 c[1][1] here, i=1 so use, c[i][j]=1+c[1][j-d1]

 c[1][1]=1+c[1][1-1]
=1+c[1][0]

=1

 c[1][2] here, i=1 so use, c[i][j]=1+c[1][j-d1]

c[1][2]=1+c[1][2-1]
=1+c[1][1]

=2
 c[1][3] here, i=1 so use, c[i][j]=1+c[1][j-d1]

c[1][3]=1+c[1][3-1]
=1+c[1][2]

=3

 c[1][4] here, i=1 so use, c[i][j]=1+c[1][j-d1]

c[1][4]=1+c[1][4-1]
=1+c[1][3]

=4

 c[1][5] here, i=1 so use, c[i][j]=1+c[1][j-d1]
c[1][5]=1+c[1][5-1]

=1+c[1][4]
=5

 c[1][6] here, i=1 so use, c[i][j]=1+c[1][j-d1]
c[1][6]=1+c[1][6-1]

=1+c[1][5]
=6

 c[1][7] here, i=1 so use, c[i][j]=1+c[1][j-d1]
c[1][7]=1+c[1][7-1]

=1+c[1][6]
=7

 c[1][8] here, i=1 so use, c[i][j]=1+c[1][j-d1]
c[1][8]=1+c[1][8-1]

=1+c[1][7]
=8

 c[2][1] here j<d2(1<4) so use, c[i][j]=c[i-1][j]

c[2][1]=c[2-1][1]
=1

 c[2][2] here j<d2(2<4) so use, c[i][j]=c[i-1][j]

c[2][2]=c[2-1][2]
=2

 c[2][3] here j<d2(3<4) so use, c[i][j]=c[i-1][j]
c[2][3]=c[2-1][3]
=3

 c[2][4] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]
c[2][4]=min(c[1,4], 1+c[2,4-4])
=min(4,1+0)
=1

 c[2][5] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]

c[2][5]=min(c[1,5], 1+c[2,5-4])
=min(5,1+1)
=2

 c[2][6] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]

c[2][6]=min(c[1,6], 1+c[2,6-4])
=min(6,1+2)
=3

 c[2][7] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]
c[2][7]=min(c[1,7], 1+c[2,7-4])
=min(7,1+3)

=4

 c[2][8] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]
c[2][8]=min(c[1,8], 1+c[2,8-4])
=min(8,1+1)

=2

 c[3][1] here j<d3(1<6) so use c[i][j]=c[i-1][j]
c[3][1]=c[3-1][1]
=1

 c[3][2] here j<d3(2<6) so use c[i][j]=c[i-1][j]
c[3][2]=c[3-1][2]
=2

 c[3][3] here j<d3(3<6) so use c[i][j]=c[i-1][j]
c[3][3]=c[3-1][3]

=3

 c[3][4] here j<d3(4<6) so use c[i][j]=c[i-1][j]
c[3][4]=c[3-1][4]

=1

 c[3][5] here j<d3(5<6) so use c[i][j]=c[i-1][j]
c[3][5]=c[3-1][5]
=2

 c[3][6] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]
c[3][6]=min(c[2,6], 1+c[3,6-6])
=min(3,1+0)
=1

 Unit-4 –Dynamic Programming

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 c[3][7] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]

c[3][7]=min(c[2,7], 1+c[3,7-6])
=min(4,1+1)

=2

 c[3][8] use c[i][j]=min(c[i-1][j], 1+c[i][j-di]

c[3][8]=min(c[2,8], 1+c[3,8-6])
=min(2,1+2)

=2

(5) Assembly line scheduling using dynamic programming

 Each line has n stations: S1,1, . . . , S1,n and S2,1, . . . , S2,n

 Corresponding stations S1, j and S2, j perform the same function but can take different amounts of time
a1, j and a2, j

 Entry times are: e1 and e2; exit times are: x1 and x2

 After going through a station, can either:
– stay on same line at no cost, or
– transfer to other line: cost after Si,j is ti,j , j = 1, . . . , n – 1

Steps:
f* : the fastest time to get through the entire factory

fi[j] : the fastest time to get from the starting point through station Si,j

 f* = min (f1[n] + x1, f2[n] + x2)

Base case: j = 1, i=1,2 (getting through station 1)
 f1[1] = e1 + a1,1
 f2[1] = e2 + a2,1

General Case: j = 2, 3, …,n, and i = 1, 2
Fastest way through S1, j is either:

– the way through S1, j - 1 then directly through S1, j, or

 f1[j - 1] + a1,j

– the way through S2, j - 1, transfer from line 2 to line 1, then

through S1, j

 f2[j -1] + t2,j-1 + a1,j

f1 {

f2 {

f* = min (f1[n] + x1, f2[n] + x2)

 Unit-4 –Dynamic Programming

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 1 2 3 4 5 6
f*=min (35+3, 37+2)
 = 38

f1[j] 9 18 20 24 32 35

f2[j] 12 16 22 25 30 37

 f1[1] here, j=1 so use, f1[1] = e1 + a1,1
 f1[1] = 2 + 7 =9

 f2[1] here, j=1 so use, f2[1] = e2 + a2,1
 f1[1] = 4 + 8 =12

 f1[2] here, j=2 so use,
f1[2] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j)

 = min(9+9, 12+2+9) = 18

 f2[2] here, j=3 so use,
f2[1] =min(f2[j - 1] + a2,j ,f1[j -1] + t1,j-1 + a2,j)

 = min (12+5, 9+2+5) = 16

Repeating same formula for f1*3+… f1[6] and f2*3+… f2[6]

 f*=min (f1[n] + x1, f2[n] + x2)
 =min (35+3, 37+2) = 38

 Unit-4 –Dynamic Programming

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(6) 0/1 knapsack problem using dynamic programming

 We need to generate table V(1…n,0…W) where, n= number of objects. Here n=5
 W= capacity of knapsack. Here W=11

 To generate table V[i][j] use following steps
Step-1: Make V[i][0] = 0 for 0 < i ≤n

Step-2: if j < i then take V[i][j] = V[i-1][j]

Step-3: if j ≥ i then take V[i][j] = max(V[i-1][j], V[i-1][j- i]+Vi)

 Solution: V[i][j]=

j

→
0 1 2 3 4 5 6 7 8 9 10 11

i

↓
0 0 0 0 0 0 0 0 0 0 0 0 0

 V1 1 0 1 1 1 1 1 1 1 1 1 1 1

 V2 2 0 1 6 7 7 7 7 7 7 7 7 7

 V3 3 0 1 6 7 7 18 19 24 25 25 25 25

 V4 4 0 1 6 7 7 18 22 24 28 29 29 40

 V5 5 0 1 6 7 7 18 22 28 29 34 35 40

 V[0][j] =0 where j=0 to W, here W=11

so, V[0][0]=0,V[0][1]=0, V[0][2]=0, V[0][3]=0,
V[0][4]=0

V[0][5]=0, V[0][6]=0, V[0][7]=0, V[0][8]=0,

V[0][9]=0
V[0][10]=0, V[0][10]=0, V[0][11]=0

 V[i][0] =0 where i= 0 to n, here n=5

so, V[0][0]=0,V[1][0]=0, V[2][0]=0, V[3][0]=0,
V[4] [0]=0

V[5] [0]=0

 V[1][1], here i=1,j=1, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][1]=max(V[0][1],V[0][0]+v1)
 =max(0,1+0)
 =1

 V[1][2], here i=1,j=2, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][2]=max(V[0][2],V[0][1]+v1)
 =max(0,0+1)
 =1

 V[1][3], here i=1,j=3, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][3]=max(V[0][3],V[0][2]+v1)

 =max(0,0+1)
 =1

 V[1][4], here i=1,j=4, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][4]=max(V[0][4],V[0][3]+v1)

 =max(0,0+1)
 =1

 Unit-4 –Dynamic Programming

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 V[1][5], here i=1,j=5, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][5]=max(V[0][5],V[0][4]+v1)

 =max(0,0+1)
 =1

 V[1][6], here i=1,j=6, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi)
V[1][5]=max(V[0][6],V[0][5]+v1)

 =max(0,0+1)
 =1

Same Procedure for because j>=

V[1][7]=1, V[1][8]=1, V[1][9]=1, V[1][10]=1, V[1][11]=1,

 V[2][1], here i=2,j=1, v2so j<

use V[i][j]= V[i-1][j]
V[2][1]=V[1][1]
 =1

 V[2][2], here i=2,j=2, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[2][2] =max(V[1][2],V[1][0]+v2)
 =max(1,0+6)
 =6

 V[2][3], here i=2,j=3, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[2][3] =max(V[1][3],V[1][1]+v2)
 =max(1,1+6)
 =7

 V[2][4], here i=2,j=4, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[2][4] =max(V[1][4],V[1][2]+v2)
 =max(1,1+6)
 =7

 V[2][5], here i=2,j=5, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)

V[2][5] =max(V[1][5],V[1][3]+v2)
 =max(1,1+6)

 =7

 V[2][6], here i=2,j=6, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)

V[2][5] =max(V[1][6],V[1][4]+v2)
 =max(1,1+6)

 =7

Same Procedure for below like V[2][6] , because j>=
V[2][7]=7, V[2][8]=7, V[2][9]=7, V[2][10]=7, V[2][11]=7

 V[3][1], here i=3,j=1,5 v3so j<

use V[i][j]= V[i-1][j]
V[3][1]=V[2][1]
 =1

 V[3][2], here i=3,j=2, 5 v3so j<

use V[i][j]= V[i-1][j]
V[3][2]=V[2][2]
 =6

 V[3][3], here i=3,j=3, 5 v3so j<

use V[i][j]= V[i-1][j]
V[3][3]=V[2][3]

 =7

 V[3][4], here i=3,j=4, 5 v3so j<

use V[i][j]= V[i-1][j]
V[3][3]=V[2][4]

 =7

 V[3][5], here i=3,j=5, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][5] =max(V[2][5],V[2][0]+v3)
 =max(7,0+18)
 =18

 V[3][6], here i=3,j=6, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][6] =max(V[2][6],V[2][1]+v3)
 =max(7,1+18)
 =19

 V[3][7], here i=3,j=7, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][7] =max(V[2][7],V[2][2]+v3)
 =max(7,6+18)
 =24

 V[3][8], here i=3,j=7, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][8] =max(V[2][8],V[2][3]+v3)
 =max(7,7+18)
 =25

 Unit-4 –Dynamic Programming

 8

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 V[3][9], here i=3,j=9, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][9] =max(V[2][9],V[2][4]+v3)

 =max(7,7+18)
 =25

 V[3][10], here i=3,j=10, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][10] =max(V[2][10],V[2][5]+v3)

 =max(7,7+18)
 =25

 V[3][11], here i=3,j=11, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[3][11] =max(V[2][11],V[2][6]+v3)

 =max(7,7+18)
 =25

 V[4][1], here i=4,j=1,6 v422 so j<

use V[i][j]= V[i-1][j]
V[4][1]=V[3][1]

 =1

 V[4][2], here i=4,j=2,6 v422so j<

use V[i][j]= V[i-1][j]

V[4][2]=V[3][2]
 =6

 V[4][3], here i=4,j=3,6 v422so j<

use V[i][j]= V[i-1][j]
V[4][3]=V[3][3]
 =7

 V[4][4], here i=4,j=4,6 v422so j<

use V[i][j]= V[i-1][j]
V[4][4]=V[3][4]
 =7

 V[4][5], here i=4,j=5,6 v422so j<

use V[i][j]= V[i-1][j]
V[4][5]=V[3][5]
 =18

 V[4][6], here i=4,j=6, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][6] =max(V[3][6],V[3][0]+v4)
 =max(19,0+22)

 =22

 V[4][7], here i=4,j=7, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][7] =max(V[3][7],V[3][1]+v4)
 =max(24,1+22)

 =24

 V[4][8], here i=4,j=8, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][8] =max(V[3][8],V[3][2]+v4)

 =max(25,6+22)
 =28

 V[4][9], here i=4,j=9, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][9] =max(V[3][9],V[3][3]+v4)

 =max(25,7+22)
 =29

 V[4][10], here i=4,j=10, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][10] =max(V[3][10],V[3][4]+v4)
 =max(25,7+22)
 =29

 V[4][11], here i=4,j=11, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[4][11] =max(V[3][11],V[3][5]+v4)
 =max(25,18+22)
 =40

 V[5][1], here i=4,j=1,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][1]=V[4][1]
 =1

 V[5][2], here i=4,j=2,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][2]=V[4][2]
 =6

 V[5][3], here i=4,j=3,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][3]=V[4][3]
 =7

 V[5][4], here i=4,j=4,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][4]=V[4][4]
 =7

 Unit-4 –Dynamic Programming

 9

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 V[5][5], here i=4,j=5,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][5]=V[4][5]

 =18

 V[5][6], here i=4,j=6,7 v528 so j<

use V[i][j]= V[i-1][j]
V[5][5]=V[4][6]

 =22

 V[5][7], here i=5,j=7, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)

V[5][7] =max(V[4][7],V[4][0]+v4)
 =max(24,0+28)

 =28

 V[5][8], here i=5,j=8, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)

V[5][8] =max(V[4][8],V[4][1]+v4)
 =max(28,1+28)

 =29

 V[5][9], here i=5,j=9, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[5][9] =max(V[4][9],V[4][2]+v4)
 =max(29,6+28)
 =34

 V[5][10], here i=5,j=10, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[5][10] =max(V[4][10],V[4][3]+v4)
 =max(29,7+28)
 =35

 V[5][11], here i=5,j=11, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi)
V[5][11] =max(V[4][11],V[4][3]+v4)

 =max(40,7+28)
 =40

(7) All point shortest path Floyd algorithm

Algorithm
 function Floyd(L[1..n, 1..n]) :array [1..n, 1..n]

 array D[1..n, 1..n]

 D ← L

 for k ← 1 to n do

 for i ← 1 to n do

 for j ← 1 to n do

 D[i,j] ← min(D[i,j], D[i,k]+ D[k,j])

 return D

– We construct a matrix D that gives the length of shortest path between each pair of nodes.
– The algorithm initializes D to L, that is, to the direct distances between nodes. It then does n

iterations, after iteration k, D gives length of the shortest paths that only use nodes in {1, 2… k} as
intermediate nodes.

– After n iterations, D therefore gives the length of shortest paths using any of the nodes in N as an
intermediate node.

– If Dk represents the matrix D after k th iteration it can be implemented by
 Dk [i,j] = min(Dk-1 [i,j], Dk-1 [i,k]+ Dk-1 [k,j])

– We use principle of optimality to compute length from i to j passing through k.

 Unit-4 –Dynamic Programming

 10

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example

D0=(

)

– Creating matrix D0 contains distance between

each node with ‘0’ as intermediate node.

D1=(

)

– Updating matrix D1 which contains distance

between each node with ‘1’ as intermediate
node.

– Update distance if minimum distance value
than existing distance value found.

– Here distance (3, 2) is updated from ∞ to 35
and distance (4, 2) is updated from ∞ to 20.

D2=(

)

– Updating matrix D2 contains distance between
two nodes with ‘2’ as intermediate node.

– Update distance if minimum distance value
than existing distance value found.

– Here distance (1, 3) is updated from ∞ to 20

and distance (1, 4) is updated from ∞ to 10.

D3=(

)

– Updating matrix D3 contains distance between
two nodes with ‘3’ as intermediate node.

– Update distance if minimum distance value
than existing distance value found.

– Here distance (2, 1) is updated from 50 to 45

D4=(

)

– Updating matrix D4 contains distance between
two nodes with ‘4’ as intermediate node.

– Update distance if minimum distance value

than existing distance value found.
– Here distance (1, 3) is updated from 20 to 15;

distance (2, 1) is updated from 45 to 20 and
distance (2, 3) is updated from 15 to 10

 Unit-4 –Dynamic Programming

 11

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(8) Matrix chain multiplication using dynamic programming

 Matrix table M[i][j] stores cost of multiplications
 Matrix chain orders table S[i][j] stores order of multiplication

 To generate M[i][j] use following steps

Step-1 if i = j then M[i][j] = 0

Step-2 if i < j then M[i][j] = min(M[i][k]+M[k+1][j]+P[i-1]* P [k]* P [j]) with i ≤ k < j

Example:

 Here dimensions are p0=5,p1=4,p2=6,p3=2,p4=7
 For i = j M[i][j]=0

M[1][1]=0,M[2][2]=0,M[3][3]=0,M[4][4]=0

For i > j we does not calculate cost
so M[i][j] will be blank for I > j

 M[1][2], here i < j for i=1,j=2

k=1 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])
For k=1
M[1][2]=M[1][1]+M[2][2]+p0*p1*p2

 = 0+0+5*4*6
 =120
Put value of minimum value of M[1][2] in table

M[i][j] and put value of k in table S[i][j].

M[i][j]=

 1 2 3 4

1 0

2 - 0

3 - - 0

4 - - - 0

S[i][j]=

 1 2 3 4

1 0

2 - 0

3 - - 0

4 - - - 0

M[i][j]=

 1 2 3 4

1 0 120

2 - 0

3 - - 0

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1

2 - 0

3 - - 0

4 - - - 0

 M[2][3], here i < j for i=1,j=2

k=2 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])

For k=2
M[2][3]=M[2][2]+M[3][3]+p1*p2*p3

 = 0+0+4*6*2
 =48
Put value of minimum value of M[2][3] in table

M[i][j] and put value of k in table S[i][j]

 M[3][4], here i < j for i=3,j=4

k=3 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])

For k=3
M[3][4]=M[3][3]+M[4][4]+p2*p3*p4

 = 0+0+6*2*7
 =84
Put value of minimum value of M[3][4] in table

M[i][j] and put value of k in table S[i][j]

 Unit-4 –Dynamic Programming

 12

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

M[i][j]=

 1 2 3 4

1 0 120

2 - 0 48

3 - - 0

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1

2 - 0 2

3 - - 0

4 - - - 0

M[i][j]=

 1 2 3 4

1 0 120

2 - 0 48

3 - - 0 84

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1

2 - 0 2

3 - - 0 3

4 - - - 0

 M[1][3], here i < j for i=1,j=3
k=1 or 2 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])
For k=1
M[1][3]=M[1][1]+M[2][3]+p0*p1*p3

 = 0+48+5*4*2

 =88
For k=2

M[1][3]=M[1][2]+M[3][3]+p0*p2*p3

 =120+0+5*6*2

 =180
Put value of minimum value of M[1][3] in table
M[i][j]
And put value of k in table S[i][j]

 M[2][4], here i < j for i=2,j=4
k=2 or 3 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])
For k=2
M[2][4]=M[2][2]+M[3][4]+p1*p2*p4

 = 0+84+4*6*7

 =252
For k=3

M[2][4]=M[2][3]+M[4][4]+p1*p3*p4

 = 48+0+4*2*7

 =104
Put value of minimum value of M[1][3] in table
M[i][j]
And put value of k in table S[i][j]

M[i][j]=

 1 2 3 4

1 0 120 88

2 - 0 48

3 - - 0 84

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1 1

2 - 0 2

3 - - 0 3

4 - - - 0

M[i][j]=

 1 2 3 4

1 0 120 88

2 - 0 48 104

3 - - 0 84

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1 1

2 - 0 2 3

3 - - 0 3

4 - - - 0

 Unit-4 –Dynamic Programming

 13

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 M[1][4], here i < j for i=1,j=4

k=1 or 2 or 3 because i ≤ k ≤ j-1
Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])

For k=1
M[1][4]=M[1][1]+M[2][4]+p0*p1*p4

 = 0+104+5*4*7
 =244

For k=2

M[1][4]=M[1][2]+M[3][4]+p0*p2*p4

 = 120+84+5*6*7

 =414
For k=3

M[1][4]=M[1][3]+M[4][4]+p0*p3*p4

 = 88+0+5*2*7

 =158
Put value of minimum value of M[1][3] in table

M[i][j]
And put value of k in table S[i][j]

M[i][j]=

 1 2 3 4

1 0 120 88 158

2 - 0 48 104

3 - - 0 84

4 - - - 0

S[i][j]=

 1 2 3 4

1 0 1 1 3

2 - 0 2 3

3 - - 0 3

4 - - - 0

PRINT_OPTIMAL (A, i, j)

1 If i=j

2 print Ai

3 else

4 print ‘(‘

5 PRINT_OPTIMAL (A, i, k)

6 PRINT_OPTIMAL (A, k+1, j)

7 print ‘)‘

 Unit-4 –Dynamic Programming

 14

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Here we are having 4 matrices let us denote it as A1,A2,A3,A4 so Calling PRINT_OPTIMAL (A, 1, 4)
Note :For values of k see matrix S[i][j]

(9) Longest chain subsequence using dynamic programming

Algorithm

LCS-LENGTH(X, Y)

 1 m ← length[X]

 2 n ← length[Y]

 3 for i ← 1 to m

 4 do c[i, 0] ← 0

 5 for j ← 0 to n

 6 do c[0, j] ← 0

 7 for i ← 1 to m

 8 do for j ← 1 to n

 9 do if xi = yj

10 then c[i, j] ← c[i - 1, j - 1] + 1

11 b[i, j] ← "↖"
12 else if c[i - 1, j] ≥ c[i, j - 1]

13 then c[i, j] ← c[i - 1, j]

14 b[i, j] ← "↑"

15 else c[i, j] ← c[i, j - 1]

16 b[i, j] ← "←"

17 return c and b

PRINT_OPTIMAL (A, 1, 4)

PRINT_OPTIMAL (A, 1, 3) PRINT_OPTIMAL (A, 4, 4) print ‘ (‘ print ‘) ‘

print ‘ (‘ PRINT_OPTIMAL (A, 1, 2) PRINT_OPTIMAL (A, 3, 3) print ‘ (‘ print ‘) ‘ print A4 print ‘) ‘

print ‘ (‘ print ‘ (‘

print ‘ (‘ PRINT_OPTIMAL (A, 1, 1) PRINT_OPTIMAL (A, 2, 2) print ‘) ‘

print ‘) ‘ print A3 print A4

print ‘ (‘ print ‘ (‘ print ‘ (‘ print A1 print A2 print ‘) ‘ print A3 print ‘) ‘ print A4 print ‘)

‘

print ‘)

‘

 Unit-4 –Dynamic Programming

 15

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 We need to generate table c(1..m, 1..n) where m=length of string S1 and n= length of string S2

 b[i][j] stores directions like(←, ↑, ↖)
 To generate table c[i][j] use following steps
 Step-1: Make c[i][0]=0 and c[0][j]=0

 Step-2: if xi = yj then c[i,j] ← c[i-1,j-1]+1 and b[i,j]←”↖”
 Step-3: else if c[i-1,j] ≥ c[I,j-1] then c[i,j] ← c[i-1,j] and

b[i,j] ← ”↑”

Step-4 else c[i,j] ← c[i,j-1] and b[i,j] ← ”←”

Example
Find any one Longest Common Subsequence of given two strings using Dynamic Programming.
S1=abbacdcba S2=bcdbbcaa

 Solution:
C[i][j]=

 0 1 2 3 4 5 6 7 8

 Yj b c d b b c a a

0 Xi 0 0 0 0 0 0 0 0 0

1 a 0 0↑ 0↑ 0↑ 0↑ 0↑ 0↑ ↖1 ↖1

2 b 0 ↖1 1← 1← ↖1 ↖1 1← 1↑ 1↑

3 b 0 ↖1 1↑ 1↑ ↖2 ↖2 2← 1← 1←

4 a 0 1↑ 1↑ 1↑ 2↑ 2↑ 2↑ ↖3 ↖2

5 c 0 1↑ ↖2 2← 2↑ 2↑ ↖3 3↑ 3←

6 d 0 1↑ 2↑ ↖3 3← 3← 3↑ 3↑ 3↑

7 c 0 1↑ ↖2 3↑ 3↑ 3↑ ↖4 4← 4←

8 b 0 ↖1 2↑ 3↑ ↖4 ↖4 4↑ 4↑ 4↑

9 a 0 1↑ 2↑ 3↑ 4↑ 4↑ 4↑ ↖5 ↖5

 Unit-4 –Dynamic Programming

 16

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

C[i][j]=

 0 1 2 3 4 5 6 7 8

 Yj b C d b b c a a

0 Xi 0 0 0 0 0 0 0 0 0

1 a 0 0↑ 0↑ 0↑ 0↑ 0↑ 0↑ ↖1 ↖1

2 b 0 ↖1 1← 1← ↖1 ↖1 1← 1↑ 1↑

3 b 0 ↖1 1↑ 1↑ ↖2 ↖2 2← 1← 1←

4 a 0 1↑ 1↑ 1↑ 2↑ 2↑ 2↑ ↖3 ↖2

5 c 0 1↑ ↖2 2← 2↑ 2↑ ↖3 3↑ 3←

6 d 0 1↑ 2↑ ↖3 3← 3← 3↑ 3↑ 3↑

7 c 0 1↑ ↖2 3↑ 3↑ 3↑ ↖4 4← 4←

8 b 0 ↖1 2↑ 3↑ ↖4 ↖4 4↑ 4↑ 4↑

9 a 0 1↑ 2↑ 3↑ 4↑ 4↑ 4↑ ↖5 ↖5

 b c d c a

Longest common subsequence = bcdca, Length =5

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 1

(1) Explain Greedy Approach. OR Give the characteristics of
Greedy algorithm. OR Write the general structure of greedy
algorithm. OR Elements of Greedy Strategy.
 Greedy Algorithm works by making the decision that seems most promising at any moment; it

never reconsiders this decision, whatever situation may arise later.
 Greedy algorithms and the problems that can be solved by greedy algorithms are characterized

by most or all of the following features.
 To solve a particular problem in an optimal way using greedy approach, there is a set or list of

candidates C.
 For example: In Make Change Problem - the coins that are available, In Minimum Spanning Tree

Problem - the edges of a graph that may be used to build a path, In Job Scheduling Problem - the
set of jobs to be scheduled, etc..

 Once a candidate is selected in the solution, it is there forever: once a candidate is excluded
from the solution, it is never reconsidered.

 To construct the solution in an optimal way, Greedy Algorithm maintains two sets. One set
contains candidates that have already been considered and chosen, while the other set contains
candidates that have been considered but rejected.

 The prototype for generalized greedy algorithm is given below:

Algorithm
Function greedy(C : set): set
{C is the set of candidates.}
S ← Ø ,S is a set that will hold the solution-
while C ≠ Ø and not solution(S) do
 x ← select (C)
 C ← C \ {x}
 if feasible (S U {x}) then
 S ← S U , x-

 if solution (S) then return S
 else return "no solution found"

 The greedy algorithm consists of four functions.
1. Solution Function:- A function that checks whether chosen set of items provides a solution.
2. Feasible Function:- A function that checks the feasibility of a set.
3. Selection Function:- The selection function tells which of the candidates is the most

promising.
4. Objective Function:- An objective function, which does not appear explicitly, but gives the

value of a solution.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 2

(2) Making Change algorithm based on greedy approach.

 Suppose we live in a country where the following coins are available: dollars (100 cents),
quarters (25 cents), dimes (10 cents), nickels (5 cents) and penny (1 cent).

 Our problem is to devise an algorithm for paying a given amount to a customer using the
smallest possible number of coins.

 For instance, if we must pay $2.89 (289 cents), the best solution is to give the customer total 10
coins: 2 dollars, 3 quarters, 1 dime and 4 coins of penny.

 Most of us solve this kind of problem every day without thinking twice, unconsciously using an
obvious greedy algorithm: starting with nothing, at every stage we add the largest valued coin
available without worrying about the consequences.

 The algorithm may be formalized as follows.

Algorithm
Function make-change(n): set of coins

{Makes change for amount n using the least possible number of coins.}
const C = {100, 25, 10, 5, 1} {C is the candidate set}

S ← Ø ,S is a set that will hold the solution-
sum ← 0 ,sum is the sum of the items in solution set S-

while sum ≠ n do
 x ← the largest item in C such that s + x ≤ n
 if there is no such item then

 return "no solution found"
 S ← S U ,a coin of value x)

sum ← sum + x
return S

 With the given values of the coins this algorithm can produces an optimal solution to make
change problem if an adequate supply of each denomination is available.

 However with a different series of values, or if the supply of some of the coins is limited, the
greedy algorithm may not work.

 In some cases it may choose a set of coins that is not optimal (that is, the set contains more
coins than necessary), while in others it may fail to find a solution at all even though soluti on
exists.

 The algorithm is "greedy" because at every step it chooses the largest coin it can, without
worrying whether this will prove to be a correct decision later.

 Furthermore it never changes its mind: once a coin has been included in the solution, i t is there
forever.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 3

(3) Spanning tree and Minimum spanning tree.

 Let G = ‹N, A› be a connected, undirected graph where N is the set of nodes and A is the set of

edges. Each edge has a given non-negative length.
 A spanning tree of a graph G is a sub-graph which is basically a tree and it contains all the

vertices of G but does not contain cycle.
 A minimum spanning tree of a weighted connected graph G is a spanning tree with minimum or

smallest weight of edges.

(4) Explain Kruskal’s Algorithm for finding minimum spanning
tree.

 In Kruskal’s algorithm, the set A of edges are sorted in increasing order of their length.

 The solution set T of edges is initially empty.

 As the algorithm progresses, edges are added to set T.

 We examine the edges of set A one by one.
 If an edge joins two nodes in different connected components, we add it to set T.
 So, the two connected components now form only one component.
 The edge is rejected if it joins two nodes in the same connected component, and therefore

cannot be added to T as it forms a cycle.

 The algorithm stops when n-1 edges for n nodes are added in the solution set T.

 At the end of the algorithm only one connected component remains, and T is then a minimum
spanning tree for all the nodes of G.

 The algorithm is described as follows:

Algorithm
Function Kruskal(G = (N, A): graph; length: A → R+): set of edges
{initialization}
(i) Sort A by increasing length
(ii) n ← the number of nodes in N
(iii) T ← Ø ,Solution Set that will contain the edges of the minimum spanning tree-
(iv) Initialize n sets, each containing a different element of set N

 {greedy loop}
(v) repeat

 e ← ,u, v- ← such that e is the shortest edge not yet considered
 ucomp ← find(u)

 vcomp ← find(v)
 if ucomp ≠ vcomp then

 merge(ucomp, vcomp)
 T ← T U ,e-

 until T contains n - 1 edges

(vi) return T
 The complexity for the Kruskal’s algorithm is in Θ(a log n) where a is total number of edges and n

is the total number of nodes in the graph G.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 4

Example:
Find the minimum spanning tree for the following graph using Kruskal’s Algorithm.

Solution:
Step 1: Sort A by increasing length

 In increasing order of length the edges are: {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1,4}, {2, 5}, {4,7}, {3, 5), {2,
4}, {3,6}, {5,7} and {5,6}.

Step 2:

Step Edges considered - {u, v} Connected Components

Initialization - {1}{2}{3}{4}{5}{6}{7}

1 {1,2} {1,2}(3}{4}{5}{6}{7}
2 {2,3} {1,2,3}{4}{5}{6}{7}

3 {4,5} {1,2,3}{4,5}{6}{7}
4 {6,7} {1,2,3}{4,5}{6,7}

5 {1,4} {1,2,3,4,5}{6,7}
6 {2,5} Rejected

7 {4,7} {1,2,3,4,5,6,7}

 When the algorithm stops, solution set T contains the chosen edges {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1,
4} and {4, 7}.

 This minimum spanning tree is shown below whose total length is 17.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 5

(5) Prim’s Algorithm to obtain minimum spanning tree.

 In Prim's algorithm, the minimum spanning tree grows in a natural way, starting from an

arbitrary root.
 At each stage we add a new branch to the tree already constructed; the algorithm stops when all

the nodes have been reached.
 Let B be a set of nodes, and A is a set of edges.

 Initially, B contains a single arbitrary node, and solution set T is empty.
 At each step Prim's algorithm looks for the shortest possible edge {u, v} such that u ε B and v ε

N\B.

 It then adds v to set B and {u, v} to solution set T.
 In this way the edges in T form a minimum spanning tree for the nodes in B.

 We continue thus as long as B ≠ N.
 The complexity for the Prim’s algorithm is Θ(n2) where n is the total number of nodes in the

graph G.

Algorithm
Function Prim(G = (N, A): graph; length: A — R+): set of edges

{initialization}
T ← Ø
B ← ,an arbitrary member of N-
while B ≠ N do

 find e = {u, v} of minimum length such that
 u ε B and v ε N \ B

 T ← T U ,e-
 B ← B U {v}

return T

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 6

Example:
Find the minimum spanning tree for the above graph using Prim’s Algorithm.

Solution:
Step 1

 We arbitrarily choose node 1 as the starting node.

Step 2
Step Edge Selected

{u, v}

Set B Edges Considered

Initialization - {1} --

1 {1,2} {1,2} {1,2} {1,4}
2 {2,3} {1,2,3} {1,4} {2,3}{2,4}{2,5}

3 {1,4} {1,2,3,4} {1,4}{2,4}{2,5}{3,5} {3,6}

4 {4,5} {1,2,3,4,5} {2,4}{2,5}{3,5} {3,6} {4,5} {4,7}
5 {4,7} {1,2,3,4,5,7} {2,4}{2,5}{3,5} {3,6} {4,7} {5,6} {5,7}

6 {6,7} {1,2,3,4,5,6,7} {2,4}{2,5}{3,5} {3,6} {5,6} {5,7}{6,7}

 When the algorithm stops, T contains the chosen edges {1, 2}, {2,3}, {1,4}, {4,5}, {4,7} and {7,6}.
 This minimum spanning tree is shown below whose total length is 17.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 7

(6) Dijkstra’s algorithm for finding shortest path.
 OR
 Single source shortest path algorithm

 Consider now a directed graph G = (N, A) where N is the set of nodes of graph G and A is the set

of directed edges.

 Each edge has a positive length.

 One of the nodes is designated as the source node.

 The problem is to determine the length of the shortest path from the source to each of the
other nodes of the graph.

 This problem can be solved by a greedy algorithm often called Dijkstra's algorithm.
 The algorithm uses two sets of nodes, S and C.

 At every moment the set S contains those nodes that have already been chosen; as we shall see,
the minimal distance from the source is already known for every node in S.

 The set C contains all the other nodes, whose minimal distance from the source is not yet
known, and which are candidates to be chosen at some later stage.

 Hence we have the invariant property N = S U C.

 Initially, S contains only the source itself; when the algorithm stops, S contains all the nodes of
the graph and our problem is solved.

 At each step we choose the node in C whose distance to the source is smallest, and add it to S.
 We shall say that a path from the source to some other node is special if all the intermediate

nodes along the path belong to S.

 At each step of the algorithm, an array D holds the length of the shortest special path to each
node of the graph.

 At the moment when we add a new node v to S, the shortest special path to v is also the

shortest of all the paths to v.

 When the algorithm stops, all the nodes of the graph are in S, and so all the paths from the
source to some other node are special. Also the values in D give the solution to the shortest path

problem.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 8

 For simplicity, we assume that the nodes of G are numbered from 1 to n, so N = {1, 2...., n}.

 We can suppose that node 1 is the source.

 The algorithm maintains a matrix L which gives the length of each directed edge:

 L[i, j] ≥ 0 if the edge (i, j) ϵ A, and L[i, j] = ∞ otherwise.

 The time required by the Dijkstra’s algorithm is Θ(n2).

Algorithm
Function Dijkstra(L[1 .. n, 1 .. n]): array [2.. n]
 array D[2.. n]
 {initialization}
 C ← ,2,3,…, n- ,S = N \ C exists only implicitly}
 for i ← 2 to n do D*i+ ← L*1, i+
 {greedy loop}
 repeat n - 2 times

 v ← some element of C minimizing D*v+
 C ← C \ ,v- ,and implicitly S ← S U ,v--

 for each w ϵ C do

 D*w+ ← min(D*w+, D*v+ + L*v, w+)
 return D

Example:

 The algorithm proceeds as follows on the graph given above.

Step v C D

Initialization - {2,3,4,5} [50,30,100,10]
1 5 {2,3,4} [50,30,20,10]

2 4 {2,3} [40,30,20,10]

3 3 {2} [35,30,20,10]

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 9

(7) Fractional knapsack problem with example. OR
 Knapsack problem using Greedy Approach.

 We are given n objects and a knapsack.
 Object i has a positive weight wi and a positive value vi for i = 1, 2... n.

 The knapsack can carry a weight not exceeding W.
 Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while

respecting the capacity constraint.

 In fractional knapsack problem, we assume that the objects can be broken into smaller pieces,
so we may decide to carry only a fraction xi of object i, where 0 ≤ xi ≤ 1.

 In this case, object i contribute xiwi to the total weight in the knapsack, and xivi to the value of
the load.

 Symbolic Representation of the problem can be given as follows:

 maximize ∑

 subject to ∑

 ≤ W

 Where, vi > 0, wi > 0 and 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n.
Greedy Approach
 We shall use a greedy algorithm to solve the problem.

 In terms of our general template of Greedy Algorithm, the candidates are the different objects,
and a solution is a vector (x1,...,xn) telling us what fraction of each object to include in the

knapsack.

Algorithm
Function knapsack(w[1..n],v[1..n],W): array [1..n]

 {initialization}
 for i ← 1 to n do x*i+ ← 0

 weight ← 0
 {greedy loop}

 while weight < W do
 i ← the best remaining object based on vi/wi
 if weight + w*i+ ≤ W then x*i+ ← 1
 weight ← weight + w*i+
 else x*i+ ← (W - weight) / w[i]

 weight ←W
 return x

 A feasible solution is one that respects the constraints given above, and the objective function is
the total value of the objects in the knapsack.

 Three possible selection functions are there
i. Most valuable remaining object: select the object with the highest value of v i

ii. Lightest weight remaining object: select the object with the lowest value of wi
iii. Object whose value per unit weight is as high as possible.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 10

Example:
 We are given 5 objects and weight carrying capacity of knapsack W = 100.

 For each object, weight wi and value vi are given in the following table.

Object i 1 2 3 4 5

wi 10 20 30 40 50
vi 20 30 66 40 60

vi / wi 2.0 1.5 2.2 1.0 1.2

Solution:
Selection xi Value

Max vi 0 0 1 0.5 1 146

Min wi 1 1 1 1 0 156
Max vi / wi 1 1 1 0 0.8 164

 Here solution is given by the third selection function Max vi / wi, where the total value gained by
selected objects is maximum.

(8) Activity Selection problem

 An activity-selection is the problem of scheduling a resource among several competing activities.

 We are given a set S of n activities with start time Si and finish time fi, of an ith activity. Find the
maximum size set of mutually compatible activities.

 Activities i and j are compatible if the half-open internal [si, fi) and [sj, fj)
do not overlap, that is, i and j are compatible if si ≥ fj and sj ≥ fi

 Here, we sort the activities of set S as per increasing finish time so that we can directly identify
mutually compatible activity by comparing finish time of first activity and start time of next

activity.
 Whenever we find the compatible activity, add it to the solution set A otherwise consider the

next activity in the sequence.

Greedy Algorithm for Activity Selection
I. Sort the input activities by increasing finishing time.
 f1 ≤ f2 ≤ . . . ≤ fn
II. Call GREEDY-ACTIVITY-SELECTOR (s, f)

1. n = length [s]
2. A={i}

3. j = 1
4. for i = 2 to n

5. do if si ≥ fj
6. then A= AU{i}

7. j = i

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 11

return set A

Example:
 Let 11 activities are given S = {p, q, r, s, t, u, v, w, x, y, z}and start and finished times for proposed

activities are (1, 4), (3, 5), (0, 6), 5, 7), (3, 8), 5, 9), (6, 10), (8, 11), (8, 12), (2, 13) and (12, 14)
respectively.

Solution:
A = {p} Initialization at line 2
A = {p, s} line 6 - 1st iteration of FOR - loop

A = {p, s, w} line 6 -2nd iteration of FOR - loop
A = {p, s, w, z} line 6 - 3rd iteration of FOR-loop

Answer A = {p, s, w, z}

Analysis :
 Part I requires O(n log n) time (by using merge of heap sort).

Part II requires Θ (n) time assuming that activities were already sorted in part I by their finish
time.

 So, the total time required by algorithm is Θ (nlogn).

(9) Job scheduling with deadlines using greedy approach.

 We have set of n jobs to execute, each of which takes unit time.
 At any point of time we can execute only one job.

 Job i earns profit gi > 0 if and only if it is executed no later than time di.
 We have to find an optimal sequence of jobs such that our total profit is maximized.

 A set of job is feasible if there exits at least one sequence that allows all the jobs in the set to be
executed no later than their respective deadlines.

 The greedy algorithm for this problem consists of constructing the schedule step by step.

 At each step the job with the highest value of profit gi is added in the solution set among those
that are not yet considered, provided that the chosen set of jobs remains feasible.

Algorithm
1. Sort all the n jobs in decreasing order of their profit.

2. Let total position P = min(n, max(di))
3. Each position 0, 1, 2…, P is in different set and F(,i-) = i, for 0 ≤ i ≤ P.

4. Find the set that contains d, let this set be K. if F(K) = 0 reject the job; otherwise:
a. Assign the new job to position F(K).
b. Find the set that contains F(K) – 1. Call this set L.

c. Merge K and L. the value for this new set is the old value of F(L).

Example:
 Using greedy algorithm find an optimal schedule for following jobs with n=6. Profits:

(P1,P2,P3,P4,P5,P6) = (20,15,10,7,5,3) and deadline (d1,d2,d3,d4,d5,d6) = (3, 1, 1, 3, 1, 3).

Solution:
Job i 1 2 3 4 5 6

Profit gi 20 15 10 7 5 3

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 12

Deadline di 3 1 1 3 1 3

Steps:
 Here jobs are already sorted in decreasing order of their profit.

 Let P = min(6, 3) = 3
F = 0 1 2 3

Job selected 0 0 0 0

 d1 = 3 : assign job 1 to position 3

F = 0 1 2 0

Job selected 0 0 0 1

 d2 = 1 : assign job 2 to position 1

F = 0 0 2 0

Job selected 0 2 0 1

 d3 = 1 : No free position so reject the job.

 d4 = 3 : assign job 4 to position 2 as position 3 is not free but position 2 is free.

F = 0 0 0 0

Job selected 0 2 4 1

 Now no more free position is left so no more jobs can be scheduled.

 The final optimal sequence: Execute the job in order 2, 4, 1 with total profit value 42.

(10) Huffman Codes
 Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman

code.

 Huffman coding is a lossless data compression algorithm.

 The idea is to assign variable-length codes to input characters.

 Lengths of the assigned codes are based on the frequencies of corresponding characters.

 The most frequent character gets the smallest code and the least frequent character gets the
largest code.

 The variable-length codes assigned to input characters are Prefix Codes.

 In Prefix codes, the codes (bit sequences) are assigned in such a way that the code assigned to
one character is not a prefix of code assigned to any other character.

 This is how Huffman Coding makes sure that there is no ambiguity when decoding the generated

bit stream.

 There are mainly two major parts in Huffman Coding
1. Build a Huffman Tree from input characters.

2. Traverse the Huffman Tree and assign codes to characters.

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 13

Algorithm

HUFFMAN(C)
1. n = |C|
2. Q = C
3. for i = 1 to n-1
4. allocate a new node z
5. z.left = x = EXTRACT-MN(Q)
6. z.right = y = EXTRACT-MIN(Q)
7. z.freq = x.freq + y.freq
8. INSERT(Q,z)
9. return EXTRACT-MIN(Q) // return the root of the tree

 We assume here that C is a set of n characters and that each character c ϵ C is an object with an

attribute c. freq giving its frequency.

 The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner.

 It begins with a set of |C| leaves and performs a sequence of |C|- 1 “merging” operations to
create the final tree.

 The algorithm uses a min-priority queue Q, keyed on the freq attribute, to identify the two least-

frequent objects to merge together.

 When we merge two objects, the result is a new object whose frequency is the sum of the
frequencies of the two objects that were merged.

Example:
 Huffman’s greedy algorithm uses a table giving how often each character occurs (i.e., its

frequency) to build up an optimal way of representing each character as a binary string.
 Suppose we have a 100,000-character data file that we wish to store compactly.

 We observe that the characters in the file occur with the frequencies given by following table.

 That is, only 6 different characters appear, and the character a occurs 45,000 times.
Characters a b c d e f

Frequency (in
thousand) 45 13 12 16 9 5

Solution:
 The steps of Huffman’s algorithm for the frequencies given above as step no. 1 to 6.
 Each step shows the contents of the queue sorted into increasing order by frequency.

 At each step, the two trees with lowest frequencies are merged.
 Leaves are shown as rectangles containing a character and its frequency.

 Internal nodes are shown as circles containing the sum of the frequencies of their children.

 An edge connecting an internal node with its children is labeled 0 if it is an edge to a left child
and 1 if it is an edge to a right child.

 The code-word for a letter is the sequence of labels on the edges connecting the root to the leaf

5 – Greedy Algorithm

Gopi Sanghani, CE Department | 2150703 - ADA 14

for that letter.

Step-1: Arrange elements in ascending order:-

Step-2:

Step-3:

Step-4:

Step-5:

Step-6:

Frequency (in
thousand)

a b c d e f
45 13 12 16 9 5

Huffman code-
word

0 101 100 111 1101 1100

 Unit-6 –Exploring Graphs

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) Undirected and directed graph

Graph:
 A graph G consist of a non-empty set V called the set of nodes (points, vertices) of the graph, a set E

which is the set of edges and a mapping from the set of edges E to as set of pairs of elements V.

 It is also convenient to write a graph as G= (V, E).

 Notice that definition of graph implied that to every edge of a graph G, we can associate a pair of
nodes of the graph. If an edge X ϵ E is thus associated with a pair of nodes (U,V) where U,V ϵ V then
we says that edge X connect U and V.

Directed Graph:
 A graph in which every edge is directed is called directed graph or digraph.

Undirected Graph:
 A graph in which every edge is undirected is called directed graph or digraph.

(2) Traversing Graph/Tree.

The following are the techniques for traversing the trees:

1) Preorder

To traverse the tree in preorder, perform the following steps:

i) Visit the root.
ii) Traverse the left sub tree in preorder.
iii) Traverse the right sub tree in preorder.

2) In order
i) Traverse the left sub tree in in order.
ii) Visit the root.
iii) Traverse the right sub tree in in order.

3) Post order
i) Traverse the left sub tree in Post order.
ii) Traverse the right sub tree in Post order.
iii) Visit the root

 The time T (n) needed to explore a binary tree containing n nodes is in Θ (n).

(3) Depth-First Search of graph
 Let G = (N, A) be an undirected graph all of whose nodes we wish to visit.

 Suppose it is somehow possible to mark a node to show it has already been visited.

 To carry out a depth-first traversal of the graph, choose any node v Є N as the starting point.

 Mark this node to show it has been visited.

 Next, if there is a node adjacent to v that has not yet been visited, choose this node as a new starting
point and call the depth-first search procedure recursively.

 On return from the recursive call, if there is another node adjacent to v that has not been visited,
choose this node as the next starting point, and call the procedure recursively once again, and so on.

 When all the nodes adjacent to v are marked, the search starting at v is finished.

 If there remain any nodes of G that have not been visited, choose any one of them as a new starting
point, and call the procedure yet again.

 Unit-6 –Exploring Graphs

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 Continue thus until all the nodes of G are marked.

 Here is the recursive algorithm.

procedure dfsearch(G)

 for each v Є N do mark[v] ← not-visited

 for each v Є N do

 if mark[v] ≠ visited then dfs(v)

procedure dfs(v)

 {Node v has not previously been visited}

 mark[v] ← visited

 for each node w adjacent to v do

 if mark[w] ≠ visited then dfs(w)

Example:

Consider the following graph.

Depth-first search progresses through the graph

1. dfs (1) initial call
2. dfs (2) recursive call
3. dfs (3) recursive call
4. dfs (6) recursive call
5. dfs (5) recursive call ; progress is blocked
6. dfs (4) a neighbor of node 1 has not been visited
7. dfs (7) recursive call
8. dfs (8) recursive call
9. there are no more nodes to visit. recursive call; progress is blocked

 The execution time is in Θ (max (a, n))

 Depth first traversal of a connected graph associates a spanning tree of a graph.
 If the graph being explored is not connected, a DFS associates to it not a single tree but a forest of

trees, one for each connected component of the graph.

 Unit-6 –Exploring Graphs

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(4) Breadth-First Search of graph

 Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search systematically
explores the edges of G to "discover" every vertex that is reachable from s.

 It computes the distance (smallest number of edges) from s to each reachable vertex.

 It also produces a "breadth-first tree" with root s that contains all reachable vertices.

 For any vertex v reachable from s, the path in the breadth-first tree from s to v corresponds to a
"shortest path" from s to v in G, that is, a path containing the smallest number of edges.

 The algorithm works on both directed and undirected graphs.

 Breadth-first search is so named because it expands the frontier between discovered and
undiscovered vertices uniformly across the breadth of the frontier.

 That is, the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k + 1.

 The algorithm for breadth-first search is as follows:

procedure search(G)
 for each v ε N do mark[v] ← not visited
 for each v ε N do
 if mark[v] ≠ visited then { dfs2 or bfs } (v)

procedure bfs(v)

 Q ← empty-queue

 mark[v] ← visited

 enqueue v into Q

 while Q is not empty do

 u ← first(Q)

 dequeue u from Q

 for each node w adjacent to u do

 if mark[w] ≠ visited then mark[w] ← visited

 enqueue w into Q

 Breadth first search in not naturally recursive. To understand the differences and similarities, let us
first consider the non-recursive formulation of DFS algorithm.

 Let stack be a data type allowing two operations PUSH and POP. It handles elements in LIFO odder.

 The function top denotes the first element at the top of the stack.

procedure dfs2(v)

P ← empty stack

mark[v] ← visited

PUSH v onto P

while P is not empty do

while there exists a node w adjacent to top(P) such that

 Unit-6 –Exploring Graphs

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

mark[w] ≠ visited do

mark[w] = visited

PUSH w onto P {w becomes new top(P)}

POP P

Example:
Consider the following graph.

If node 1 is starting point

 Node Visited Q

1. 1 2,3,4

2. 2 3,4,5,6

3. 3 4,5,6

4. 4 5,6,7,8

5. 5 6,7,8

6. 6 7,8

7. 7 8

8. 8 -

(5) Topological sort

A topological sort of the nodes of a directed acyclic graph is the operation of arranging the nodes in order
in such a way that if there exists an edge (i, j), then i precedes j in the list.
Given graph (V, E) find a linear ordering of vertices such that for all edges (v,w) v represents w in
ordering.

Example: Consider the following graph

 Unit-6 –Exploring Graphs

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Step-1: Identifying vertices that have no incoming
edge. Here, node A and F having no incoming
edges.
Step-2: Select vertex delete this vertex with all its
outgoing edges and put it in output list. Here,
vertex A is deleted.

O/P: A

Now selecting vertex B and deleting it with its
edges

O/P: A,B

Repeating the steps gives ordered output as A,B,C,D,E,F

(6) Articulation Point

 A node v of a connected graph is an articulation point if the subgraph obtained by deleting v and the
entire edges incident on v is no longer connected.

 A graph G is biconnected or unarticulated if it is connected and has no articulation points.

 A graph is bicoherent or 2 – edge connected if each articulation point is joined by at least two edges
to each component of the remaining subgraph.

For example, node 1 is an articulation point of the graph in the above figure; If we delete it, there remain
two connected components {2, 3, 5, 6} and {4, 7, 8}.

The following is the complete algorithm for finding the articulation points of an undirected graph G:

1) Carry out a depth-first search in G, starting from any node. Let T be the tree generated by this
search, and for each node v of G, let prenum[v] be the number assigned by the search.

2) Traverse T in postorder. For each node v visited, calculate highest[v] as the minimum of
(a) prenum [v];
(b) prenum [w] for each node w such that there is an edge {v, w} in G with no corresponding

edge in T; and

 Unit-6 –Exploring Graphs

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(c) highest [x] for every child x of v.
3) Determine the articulation paints of G as follows.

(a) The root of T is an articulation point if and only if it has more than one child.
(b) Any other node v is an articulation point if and only if it has a child x such that highest[x] ≥

prenum[v].

Following figure shows the depth first tree of the given graph with prenum on left and highest on the
right of every node.

Articulation points:

Step 3 (a) Root of T has two child nodes so root (node 1) is an articulation point.

Step 3 (b) For node 4, highest [5] ≥ prenum [4] so node 4 is an articulation point.

1

2 4

7

8

3

6

5

1 1

1

1

2

3

4 2

2 5

6 6

6

6

7

8

 Unit-6 –Exploring Graphs

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(7) Connected Components

 A directed graph is strongly connected if there exists a path from u to v and also a path from v to u for
every distinct pair of nodes u and v.

 If a directed graph is not strongly connected, we are interested in the largest sets of nodes such that
the corresponding sub graphs are strongly connected.

 Each of these sub graphs is called a strongly connected component of the original graph. In the graph
of Figure, for instance, nodes {1, 2, 3} and the corresponding edges form a strongly connected
component. Another component corresponds to the nodes {4, 7, 8}.

 Despite the fact that there exist edges (1, 4) and (1, 8), it is not possible to merge these two strongly
connected components into a single component because there exists no path from node 4 to node 1.

5 8 7

4

6

3 2

1

Unit-7 –Backtracking and Branch and
Bound

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) Back Tracking

 In its basic form, backtracking resembles a depth first search in a directed graph.

 The graph is usually a tree or at least it does not contain cycles.

 The graph exists only implicitly.

 The aim of the search is to find solutions to some problem.

 We do this by building partial solutions as the search proceeds.

 Such partial solutions limit the regions in which a complete solution may be found.

 Generally, when the search begins, nothing is known about the solutions to the problem.

 Each move along an edge of the implicit graph corresponds to adding a new element to a partial
solution. That is to narrow down the remaining possibilities for a complete solution.

 The search is successful if, proceeding in this way, a solution can be completely defined.

 In this case either algorithm may stop or continue looking for alternate solutions.

 On the other hand, the search is unsuccessful if at some stage the partial solution constructed so far
cannot be completed.

 In this case the search backs up like a depth first search.
When it gets back to a node with one or more unexplored neighbors, the search for a solution
resumes.

(2) The Eight queens problem

 The classic problem of placing eight queens on a chessboard in such a way that none of them
threatens any of the others.

 Recall that a queen threatens the squares in the same row, in the same column, or on the same
diagonals.

 The most obvious way to solve this problem consists of trying systematically all the ways of placing
eight queens on a chessboard, checking each time to see whether a solution has been obtained.

 This approach is of no practical use, even with a computer, since the number of positions we would

have to check is (64
8
)= 4426165368.

 The first improvement we might try consists of never putting more than one queen on any given row.

 This reduces the computer representation of the chessboard to a vector of eight elements, each giving
the position of the queen in the corresponding row.

 For instance, the vector (3, 1, 6, 2, 8, 6, 4, 7) represents the position where the queen on row 1 is in
column 3, the queen on row 2 is in column 1, and so on.

Solution using Backtracking

 Backtracking allows us to do better than this. As a first step, we reformulate the eight queen’s
problem as a tree searching problem. We say that a vector V[1…k] of integers between 1 and 8 is k-
promising, for 0 ≤ k ≤ 8, if none of the k queens placed in positions (1, V[1]), (2, V[2]), … , (k, V[k])
threatens any of the others.

 Mathematically, a vector V is k-promising if, for every pair of integers i and j between 1 and k with i ≠
j, we have V[i] - V[j] does not belongs to {i-j, 0, j – i}. For k ≤ 1, any vector V is k-promising.

 Solutions to the eight queens’ problem correspond to vectors that are 8-promisng.

 Let N be the set of k-promising vectors, 0 ≤ k ≤ 8.

 Let G = (N, A) be the directed graph such that (U, v) ∈ A if and only if there exists an integer k, 0 ≤ k ≤

Unit-7 –Backtracking and Branch and
Bound

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 1

 1
 2

 1

 2

1

2

1

2
3

1

2
3

4

 1

 2
3

No solution

No solution
Solution

8 such that,

 U is k-promising,

 V is (k + 1)-promising, and

 U[i] = V[i] for every i ∈ [1..k].

The algorithm for the 8 – queens problem is given as follows:

procedure queens (k, col, diag45, diag135)
 {sol[1..k] is k promising,
 col = {sol[i] | 1 ≤ i ≤k},
 diag45 = {sol[i] – i + 1 | 1 ≤ i ≤ k}, and

 diag135 = {sol[i] + i – 1 | 1 ≤ i ≤ k}}
 if k = 8 then {an 8-promising vector is a solution}
 write sol
 else {explore (k+1) promising extensions of sol }
 for j ← 1 to 8 do

if j does not belongs to col and j – k does not belongs to diag45 and j + k does not
belongs to diag135

 then sol[k+1] ← j
 {sol[1..k+1] is (k+1)-promising}
 queens(k + 1, col U {j},

 diag45 U {j - k}, diag135 U {j + k})

Solution of 4 queens problem

Unit-7 –Backtracking and Branch and
Bound

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(3) Knapsack problem using back tracking

 We are given a certain number of objects and a knapsack.

 We shall suppose that we have n types of object, and that an adequate number of objects of each
type are available.

 This does not alter the problem in any important way. For i = 1, 2,..., n, an object of type i has a
positive weight wi and a positive value vi.

 The knapsack can carry a weight not exceeding W.

 Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while
respecting the capacity constraint.

 We may take an object or to leave it behind, but we may not take a fraction of an object.

 Suppose for concreteness that we wish to solve an instance of the problem involving four types of
objects, whose weights are respectively 2, 3, 4 and 5 units, and whose values are 3, 5, 6 and 10. The
knapsack can carry a maximum of 8 units of weight.

 This can be done using backtracking by exploring the implicit tree shown below.

0/1 knapsack space tree

 Here a node such as (2, 3; 8) corresponds to a partial solution of our problem.

 The figures to the left of the semicolon are the weights of the objects we have decided to include,
and the figure to the right is the current value of the load.

 Moving down from a node to one of its children corresponds to deciding which kind of object to put
into the knapsack next. Without loss of generality we may agree to load objects into the knapsack in
order of increasing weight.

 Initially the partial solution is empty.

 The backtracking algorithm explores the tree as in a depth-first search, constructing nodes and partial
solutions as it goes.

 In the example, the first node visited is (2;3), the next is (2,2;6), the third is (2,2,2;9) and the fourth
(2,2,2.2; 12).

 As each new node is visited, the partial solution is extended.

 After visiting these four nodes, the depth-first search is blocked: node (2, 2, 2, 2; 12) has no unvisited
successors (indeed no successors at all), since adding more items to this partial solution would violate

Unit-7 –Backtracking and Branch and
Bound

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

the capacity constraint.

 Since this partial solution may turn out to be the optimal solution to our instance, we memorize it.

 The depth-first search now backs up to look for other solutions.

 At each step back up the tree, the corresponding item is removed from the partial solution.

 In the example, the search first backs up to (2, 2, 2; 9), which also has no unvisited successors; one
step further up the tree, however, at node (2, 2; 6), two successors remain to be visited.

 After exploring nodes (2, 2, 3; 11) and (2, 2, 4; 12), neither of which improves on the solution
previously memorized, the search backs up one stage further, and so on.

 Exploring the tree in this way, (2, 3, 3; 13) is found to be a better solution than the one we have, and
later (3, 5; 15) is found to be better still.

 Since no other improvement is made before the search ends, this is the optimal solution to the
instance.

 Algorithm can be given as follows:

function backpack(i, r)

{Calculates the value of the best load that can be constructed using items of types i to n and whose
total weight does not exceed r }

b ← 0

{Try each allowed kind of item in turn}

for k ← i to n do

 if w[k] ≤ r then

 b ← max(b, v[k] + backpack(k, r - w[k]))

return b

Now to find the value of the best load, call backpack (1, W).

(4) Minmax Principle

 Sometimes it is impossible to complete a search due to large number of nodes for example games like
chess.

 The only solution is to be content with partial solution.

 Minmax is a heuristic approach and used to find move possibly better than all other moves.

 Whichever search technique we use, the awkward fact remains that for a game such as chess a
complete search of the associated graph is out of the question.

 In this situation we have to be content with a partial search around the current position.

 This is the principle underlying an important heuristic called Minimax.

 Minimax (sometimes Minmax) is a decision rule used in decision theory, game theory, statistics and
philosophy for minimizing the possible loss for a worst case (maximum loss) scenario.

 Originally formulated for two-player zero-sum game theory, covering both the cases where players
take alternate moves and those where they make simultaneous moves, it has also been extended to
more complex games and to general decision making in the presence of uncertainty.

 A Minimax algorithm is a recursive algorithm for choosing the next move in an n-player game, usually
a two-player game.

Unit-7 –Backtracking and Branch and
Bound

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 A value is associated with each position or state of the game. This value is computed by means of a
position evaluation function and it indicates how good it would be for a player to reach that position.
The player then makes the move that maximizes the minimum value of the position resulting from the
opponent's possible following moves.

 Although this heuristic does not allow us to be certain of winning whenever this is possible, it finds a
move that may reasonably be expected to be among the best moves available, while exploring only
part of the graph starting from some given position.

 Exploration of the graph is normally stopped before the terminal positions are reached, using one of
several possible criteria, and the positions where exploration stopped are evaluated heuristically.

 In a sense, this is merely a systematic version of the method used by some human players that
consists of looking ahead a small number of moves.

Example: Tic tac toe

Unit-7 –Backtracking and Branch and
Bound

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(5) Branch and Bound Travelling Salesman Problem

Branch and Bound

 Set up a bounding function, which is used to compute a bound (for the value of the objective
function) at a node on a state-space tree and determine if it is promising.

 Promising (if the bound is better than the value of the best solution so far): expand beyond the node.

 Non-promising (if the bound is no better than the value of the best solution so far): not expand
beyond the node (pruning the state-space tree).

Traveling Salesman Problem

Construct the state-space tree:

 A node = a vertex: a vertex in the graph. A node that is not a leaf represents all the tours that start
with the path stored at that node; each leaf represents a tour (or non-promising node).

 Branch-and-bound: we need to determine a lower bound for each node.
- For example, to determine a lower bound for node [1, 2] means to determine a lower bound on

the length of any tour that starts with edge 1—2.

 Expand each promising node, and stop when all the promising nodes have been expanded. During this
procedure, prune all the non-promising nodes.
- Promising node: the node’s lower bound is less than current minimum tour length.
- Non-promising node: the node’s lower bound is NO less than current minimum tour length.

 Because a tour must leave every vertex exactly once, a lower bound on the length of a tour is b (lower
bound) minimum cost of leaving every vertex.

 The lower bound on the cost of leaving vertex v1 is given by the minimum of all the nonzero entries in
row 1 of the adjacency matrix.

 The lower bound on the cost of leaving vertex vn is given by the minimum of all the nonzero entries in
row n of the adjacency matrix.

 Because every vertex must be entered and exited exactly once, a lower bound on the length of a tour
is the sum of the minimum cost of entering and leaving every vertex.

 For a given edge (u, v), think of half of its weight as the exiting cost of u, and half of its weight as the
entering cost of v.

 The total length of a tour = the total cost of visiting (entering and exiting) every vertex exactly once.

 The lower bound of the length of a tour = the lower bound of the total cost of visiting (entering and
exiting) every vertex exactly once.

 Calculation:
- For each vertex, pick top two shortest adjacent edges (their sum divided by 2 is the lower bound

of the total cost of entering and exiting the vertex); add up these summations for all the vertices.

 Assume that the tour starts with vertex a and that b is visited before c.

Unit-7 –Backtracking and Branch and
Bound

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example:

a b

c d

e

3

4

1 7 6 5

2 3

8
9

 Unit-8 –String Matching

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) The naive string matching algorithm

 The string-matching problem is defined as follows.

 We assume that the text is an array T [1…n] of length n and that the pattern is an array P [1…m] of
length m ≤ n.

 We further assume that the elements of P and T are characters drawn from a finite alphabet Σ. For
example, we may have Σ = {0, 1} or Σ = {a, b ..., z}.

 The character arrays P and T are often called strings of characters.

 We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at
position s + 1 in text T) if 0 ≤ s ≤ n - m and T [s + 1…s + m] = P [1…m] (that is, if T [s + j] = P[j], for 1 ≤ j ≤
m).

 If P occurs with shift s in T, then we call s a valid shift; otherwise, we call s an invalid shift. The string-
matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a
given text T.

 The naive algorithm finds all valid shifts using a loop that checks the condition P [1…m] = T [s + 1…s +
m] for each of the n - m + 1 possible values of s.

NAIVE-STRING-MATCHER(T, P)

1 n ← length[T]

2 m ← length[P]

3 for s ← 0 to n – m do

4 if P[1,…, m] == T[s + 1,…, s + m]

5 then print "Pattern occurs with shift" s

 The naive string-matching procedure can be interpreted graphically as sliding a "template" containing
the pattern over the text, noting for which shifts all of the characters on the template equal the
corresponding characters in the text, as illustrated in Figure.

 The for loop beginning on line 3 considers each possible shift explicitly.

 The test on line 4 determines whether the current shift is valid or not; this test involves an implicit
loop to check corresponding character positions until all positions match successfully or a mismatch is
found.

 Line 5 prints out each valid shift s.

Example:

 In the above example, valid shift is s = 3 for which we found the occurrence of pattern P in text T.

 Procedure NAIVE-STRING-MATCHER takes time O ((n - m + 1) m), and this bound is tight in the worst
case. The running time of NAIVE-STRING- MATCHER is equal to its matching time, since there is no
preprocessing.

a c a a b c a c a a b c a c a a b c a c a a b c

a a b a a b a a b a a b
S=1 S=2 S=3 S=4

 Unit-8 –String Matching

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(2) The Rabin-Karp algorithm

 This algorithm makes use of elementary number-theoretic notions such as the equivalence of two
numbers modulo a third number.

 Let us assume that Σ = {0, 1, 2… 9}, so that each character is a decimal digit. (In the general case, we
can assume that each character is a digit in radix-d notation, where d = |Σ|).

 We can then view a string of k consecutive characters as representing a length-k decimal number. The
character string 31415 thus corresponds to the decimal number 31,415.

 Given a pattern P [1…m], let p denotes its corresponding decimal value.

 In a similar manner, given a text T [1…n], let ts denote the decimal value of the length-m substring T[s
+ 1…s + m], for s = 0, 1. . . n - m.

 Certainly, ts = p if and only if T [s + 1…s + m] = P [1…m]; thus, s is a valid shift if and only if ts = p.

 We can compute p in time θ(m) using Horner's rule:

 P = P[m] + 10 (P[m - 1] + 10(P[m - 2] + · · · + 10(P[2] + 10P[1])…))

 The value t0 can be similarly computed from T [1…m] in time θ(m).

 To compute the remaining values t1, t2, . . . , tn-m in time θ(n - m), it suffices to observe that ts+1 can be
computed from ts in constant time, since

 ts+1 = 10(ts – 10m-1T[s + 1]) + T[s + m + 1]

 Subtracting 10m-1 T[s + 1] removes the high-order digit from ts, multiplying the result by 10 shifts the
number left one position, and adding T [s + m + 1] brings in the appropriate lower order digit.

 For example, if m = 5 and ts = 31415 then we wish to remove the high order digit T [s + 1] = 3 and
bring in the new lower order digit (suppose it is T [s + 5 + 1] = 2) to obtain ts+1 = 10 (31415 – 10000 *3)
+ 2 = 14152

 The only difficulty with this procedure is that p and ts may be too large to work with conveniently.

 There is a simple cure for this problem, compute p and the ts's modulo a suitable modulus q.

 ts+1 = (d(ts – T[s + 1]h) + T[s + m + 1]) mod q

Where h = dm-1 (mod q) is the value of the digit "1" in the high-order position of an m-digit text
window.

 The solution of working modulo q is not perfect, however ts = p (mod q) does not imply that ts = p but
if ts ≠ p (mod q) definitely implies ts ≠ p, so that shift s is invalid.

 Any shift s for which ts = p (mod q) must be tested further to see whether s is really valid or it is just a
spurious hit.

 This additional test explicitly checks the condition T [s + 1…s + m] = P [1…m].

 Unit-8 –String Matching

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Algorithm RABIN-KARP-MATCHER(T, P, d, q)

 n ← length[T];

 m ← length[P];

 h ← dm-1 mod q;

 p ← 0;

 t0 ← 0;

 for i ← 1 to m do

 p ← (dp + P[i]) mod q;

 t0 ← (dt0 + P[i]) mod q

 for s ← 0 to n – m do

 if p == ts then

 if P[1..m] == T[s+1..s+m] then

 print “pattern occurs with shift s”

 if s < n-m then

 ts+1 ← (d(ts – T[s+1]h) + T[s+m+1]) mod q

Analysis

 RABIN-KARP-MATCHER takes Θ(m) preprocessing time and it matching time is Θ(m(n – m + 1)) in the worst
case.

Example:

Given T = 31415926535 and P = 26

We choose q = 11

P mod q = 26 mod 11 = 4

3 1 4 1 5 9 2 6 5 3 5

31 mod 11 = 9 not equal to 4

3 1 4 1 5 9 2 6 5 3 5

14 mod 11 = 3 not equal to 4

3 1 4 1 5 9 2 6 5 3 5

41 mod 11 = 8 not equal to 4

3 1 4 1 5 9 2 6 5 3 5

15 mod 11 = 4 equal to 4 -> spurious hit

3 1 4 1 5 9 2 6 5 3 5

59 mod 11 = 4 equal to 4 -> spurious hit

3 1 4 1 5 9 2 6 5 3 5

92 mod 11 = 4 equal to 4 -> spurious hit

3 1 4 1 5 9 2 6 5 3 5

26 mod 11 = 4 equal to 4 -> an exact match!!

 Unit-8 –String Matching

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

3 1 4 1 5 9 2 6 5 3 5

65 mod 11 = 10 not equal to 4

3 1 4 1 5 9 2 6 5 3 5

53 mod 11 = 9 not equal to 4

3 1 4 1 5 9 2 6 5 3 5

35 mod 11 = 2 not equal to 4

(3) String Matching with finite automata

 Many string-matching algorithms build a finite automaton that scans the text string T for all
occurrences of the pattern P.

 We begin with the definition of a finite automaton. We then examine a special string-matching
automaton and show how it can be used to find occurrences of a pattern in a text.

 Finally, we shall show how to construct the string-matching automaton for a given input pattern.

Finite automata

A finite automaton M is a 5-tuple (Q, q0, A, Σ, δ), where

 Q is a finite set of states,

 q0 Є Q is the start state,

 A C Q is a distinguished set of accepting states,

 Σ is a finite input alphabet,
δ is a function from Q × Σ into Q, called the transition function of M.

 The finite automaton begins in state q0 and reads the characters of its input string one at a time.

 If the automaton is in state q and reads input character a, it moves ("makes a transition") from state q
to state δ(q, a).

 Whenever its current state q is a member of A, the machine M is said to have accepted the string read
so far. An input that is not accepted is said to be rejected.

 Following Figure illustrates these definitions with a simple two-state automaton.

String-matching automata

 There is a string-matching automaton for every pattern P; this automaton must be constructed
from the pattern in a preprocessing step before it can be used to search the text string.

 In our example pattern P = ababaca.

 In order to properly search for the string, the program must define a suffix function () which
checks to see how much of what it is reading matches the search string at any given moment.

 Unit-8 –String Matching

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

σ(x) = max {k : Pk ⊐ x}
P= ababa
P1=a
P2=ab
P3=aba
P4=abab
σ (ababaca)=aba {here aba is suffix of pattern P}

 We define the string-matching automaton that corresponds to a given pattern P[1,…,m] as
follows.

 The state set Q is {0, 1 . . . m}. The start state q0 is state 0, and state m is the only accepting state.

 The transition function δ is defined by the following equation, for any state q and character a:

δ (q, α) = σ(Pq α)

ALGORITHM FINITE-AUTOMATON-MATCHER(T, δ, m)

 n ← length[T]

 q ← 0

 for i ← 1 to n do

 q ← δ(q, T[i])

 if q == m

 then print "Pattern occurs with shift" i – m

ALGORITHM COMPUTE-TRANSITION-FUNCTION(P, Σ)

 m ← length[P]

 for q ← 0 to m do

 for each character α Є Σ do

 k ← min(m + 1, q + 2)

 repeat k ← k - 1

 until Pk ⊐ Pq α

 δ(q, α) ← k

return δ

 This procedure computes δ(q, α) in a straightforward manner according to its definition.

 The nested loops beginning on lines 2 and 3 consider all states q and characters α and lines 4-7 set
δ(q, a) to be the largest k such that Pk ⊐ Pq α. The code starts with the largest conceivable value of
k, which is min (m, q + 1), and decreases k until Pk ⊐ Pq α.

 Time complexity for string matching algorithm

Algorithm Preprocessing time Matching time

Naive 0 O((n – m + 1)m)

Rabin-Karp Θ (m) O((n – m + 1)m)

Finite automaton O (m|∑|) Θ (n)

 Unit-8 –String Matching

 6

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example:

T=
1 2 3 4 5 6 7 8 9 10 11

P=
1 2 3 4 5 6 7

a b a b a b a c a b a a b a b a b a

q=0 α=a k=2 P2⊐P0 α

ab⊐ϵa {here ‘ab’ is not suffix of ‘ϵa’ so k=k-1}

 k=1 P1⊐P0 α

a⊐ϵa { here ‘a’ suffix of ‘ϵa’ so make entry in transition table}

 α=b k=2 P2⊐P0 α

ab⊐ϵb {here ‘ab’ is not suffix of ‘ϵb’ so k=k-1}

 k=1 P1⊐P0 α

a⊐ϵb { here ‘a’ is not suffix of ‘ϵb’ so k=k-1}

 k=0 P0⊐P0 α

ϵ⊐ϵb { here ‘ϵ’ suffix of ‘ϵa’ so make entry in transition table}

 α=c k=2 P2⊐P0 α

ab⊐ϵc {here ‘ab’ is not suffix of ‘ϵc’ so k=k-1}

 k=1 P1⊐P0 α

a⊐ϵc { here ‘a’ is not suffix of ‘ϵc’ so k=k-1}

 k=0 P0⊐P0 α

ϵ⊐ϵc { here ‘ϵ’ suffix of ‘ϵc’ so make entry in transition table}

 Repeat this procedure for q=0 to 7 we can get transition function table then pattern can be matched
using this table

input

State a b c P

0 1 0 0 a

1 1 2 0 b

2 3 0 0 a

3 1 4 0 b

4 5 0 0 a

5 1 4 6 c

6 7 0 0 a

7 1 2 0

 Unit-8 –String Matching

 7

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(4) The Knuth-Morris-Pratt algorithm

 Knuth, Morris and Pratt proposed a linear time algorithm for the string matching problem.

 A matching time of O(n) is achieved by avoiding comparisons with elements of ‘T’ that have previously
been involved in comparison with some element of the pattern ‘P’ to be matched. i.e., backtracking
on the text ‘S’ never occurs.

The prefix function, π

 The prefix function, π for a pattern encapsulates knowledge about how the pattern matches against

shifts of itself. This information can be used to avoid useless shifts of the pattern ‘P’. In other words,
this enables avoiding backtracking on the text ‘T’.

The KMP Matcher

 With text ‘T’, pattern ‘P’ and prefix function ‘π’ as inputs, finds the occurrence of ‘P’ in ‘T’ and

returns the number of shifts of ‘P’ after which occurrence is found.

KMP-MATCHER(T, P)

 1 n ← length[T]

 2 m ← length[P]

 3 π ← COMPUTE-PREFIX-FUNCTION(P)

 4 q ← 0 //Number of characters matched.

 5 for i ← 1 to n //Scan the text from left to right.

 6 do while q > 0 and P[q + 1] ≠ T[i]

 7 do q ← π[q] //Next character does not match.

 8 if P[q + 1] = T[i]

 9 then q ← q + 1 //Next character matches.

10 if q = m //Is all of P matched?

11 then print "Pattern occurs with shift" i - m

12 q ← π[q] //Look for the next match.

COMPUTE-PREFIX-FUNCTION(P)

 1 m ← length[P]

 2 π[1] ← 0

 3 k ← 0

 4 for q ← 2 to m

 5 do while k > 0 and P[k + 1] ≠ P[q]

 6 do k ← π[k]

 7 if P[k + 1] = P[q]

 8 then k ← k + 1

 9 π[q] ← k

10 return π

 Unit-8 –String Matching

 8

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Example:

 For the pattern P = ababababca and q = 8. Figure (a) the π function for the given pattern.

 Since π [8] = 6, π [6] = 4, π [4] = 2, and π [2] = 0, by iterating π we obtain π*[8] = {6, 4, 2, 0}. Figure (b)

 We slide the template containing the pattern P to the right and note when some prefix Pk of P
matches up with some proper suffix of P8; this happens for k = 6, 4, 2, and 0.

 In the figure, the first row gives P and the dotted vertical line is drawn just after P8.

 Successive rows show all the shifts of P that cause some prefix Pk of P to match some suffix of P8.

 Successfully matched characters are shown shaded Vertical lines connect aligned matching
characters.

 Thus, {k: k < q and Pk ⊐ Pq} = {6, 4, 2, 0}. π*[q] = {k : k < q and Pk ⊐ Pq } for all q.

 Unit-9 –Introduction to NP Completeness

 1

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

(1) P and NP Problems

P Problems

 The class P consists of those problems that are solvable in polynomial time. More specifically, they are
problems that can be solved in time O(nk) for some constant k, where n is the size of the input to the
problem.
Fundamental complexity classes.

 The class of problems that can be solved in polynomial time is called P class.

 These are basically tractable. Few examples of P class problems are,
1. A set of decision problems with yes/no answer.
2. Calculating the greatest common divisor.
3. Sorting of n numbers in ascending or descending order.
4. Searching of an element from the list, etc.

NP Problems

 NP = Non-Deterministic polynomial time

 NP means verifiable in polynomial time

 The class NP consists of those problems that are "verifiable" in polynomial time.

 What we mean here is that if we were somehow given a "certificate" of a solution, then we could
verify that the certificate is correct in time polynomial in the size of the input to the problem.

 NP is one of the most fundamental classes of problems in computational complexity theory.

 The abbreviation NP refers to non-deterministic polynomial time.

 These problems can be solved in non-deterministic polynomial time.

 For example
1. Knapsack problem O(2n/2)
2. Travelling salesperson problem (O(n22n)).
3. Graph coloring problem.
4. Hamiltonian circuit problems, etc...

(2) NP hard and NP Complete problems

NP Complete
 The class of problems “NP-complete stands for the sub-lass od decision problems in NP that are

hardest.

 The class NP-complete is abbreviated as NPC and comes from:
-Non-deterministic polynomial
-Complete-“Solve one, solve them all”

A decision problem L is said to be NP-Complete if:
(i) L is in NP that means any given solution to this problem can be verified quickly in polynomial time.
(ii) Every problem is NP reducible to L in polynomial time.

 It means that if a solution to this L can be verified in polynomial time then it can be shown to be in NP.

 A problem that satisfies second condition is said to be NP-hard that will be examined in recent.

 Informally it is believed that if a NPC problem has a solution in polynomial time then all other NPC
problems can be solved in polynomial time.

 The list given below is the examples of some well-known problems that are NP-complete when

 Unit-9 –Introduction to NP Completeness

 2

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

expressed as decision problems.

i. Boolean circuit satisfiability problem(C-SAT).

ii. N-puzzle problem.

iii. Knapsack problem.

iv. Hamiltonian path problem.

v. Travelling salesman problem.

vi. Sub graph isomorphism problem.

vii. Subnet sum problem.

viii. Clique Decision Problem (CDP).

ix. Vertex cover problem.

x. Graph coloring problem.

 The following techniques can be applied to solve NPC problems and they often give rise to
substantially faster algorithms:

i. Approximation Approach.

ii. Randomization.

iii. Restriction.

iv. Parameterization.

v. Heuristics.

NP Hard

The class NP-hard written as NPH or NP-H stands for non-deterministic polynomial time hard. The class
can be defined as:

i. NPH is a class of problems that are "At least as hard as the hardest problems in NP"

ii. A problem H is NP-hard if there is a NPC problem L that is polynomial time reducible to H (i.e. L
H).

iii. A problem H is said to be NPH if satisfiability reduces to H.

iv. If a NPC problem L can be solved in polynomial time by an oracle machine with an oracle for H.

 NP-hard problems are generally of the following types-decisions problems, search problems, or
optimization problems.

 To prove a problem H is NP-hard, reduce a known NP-hard problem to H.

 If a NPH problem can be solved in polynomial time, then all NPC problems can also be solved in
polynomial time. As a result, all NPC problems are NPH, but all NPH problems are not NPC.

(3) Hamiltonian problem

 Unit-9 –Introduction to NP Completeness

 3

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

 To find a Hamiltonian cycle un graph ‘G’ is not a decision problem but is graph G Hamiltonian is a
decision problem.

 In Hamiltonian problem graph G is accepted as input and it is asked to find a simple cycle in G that
visits each vertex of G exactly on and returns to its starting vertex. Such a cycle is called Hamiltonian
cycle.

 Let G= (V, E) be a connected graph with ‘n’ vertices. A HAMILTONIAN CYCLE is a round trip path along
‘n’ edges of G which every vertex once and returns to its starting position.

 If the Hamiltonian cycle begins at some vertex V1 belongs to G and the vertex are visited in the order
of V1,V2…….Vn+1,then the edges are in E,1<=I<=n and the Vi are distinct except V1 and Vn+1 which
are equal.

 Consider an example graph G1.

The graph G1 has Hamiltonian cycles:

->1, 3, 4, 5, 6, 7, 8, 2, 1 and

->1, 2, 8, 7, 6, 5, 4, 3, 1.

The backtracking algorithm helps to find Hamiltonian cycle for any type of graph.

Procedure:
1. Define a solution vector X(Xi……..Xn) where Xi represents the Ith visited vertex of the proposed

cycle.
2. Create a cost adjacency matrix for the given graph.
3. The solution array initialized to all zeros except X (1) =1, because the cycle should start at vertex

‘1’.
4. Now we have to find the second vertex to be visited in the cycle.
5. The vertex from 1 to n are included in the cycle one by one by checking 2 conditions,

I. There should be a path from previous visited vertex to current vertex.
II. The current vertex must be distinct and should not have been visited earlier.

6. When these two conditions are satisfied the current vertex is included in the cycle, else the next
vertex is tried.

7. When the nth vertex is visited we have to check, is there any path from nth vertex to first 8 vertex.
If no path, the go back one step and after the previous visited node.

8. Repeat the above steps to generate possible Hamiltonian cycle.

1 2 3 4

8 7 6 5

 Unit-9 –Introduction to NP Completeness

 4

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

Algorithm:(Finding all Hamiltonian cycle)

Algorithm Hamiltonian (k)

{

 Loop

 Next value (k)

If (x (k)=0) then return;

{

If k=n then

Print (x)

Else

Hamiltonian (k+1);

End if

}

Repeat

}

Algorithm Nextvalue (k)

{

 Repeat

{

 X [k]=(X [k]+1) mod (n+1); //next vertex

 If (X [k]=0) then return;

 If (G [X [k-1], X [k]] 0) then

{

 For j=1 to k-1 do if (X [j] =X [k]) then break; // Check for distinction.

 If (j=k) then //if true then the vertex is distinct.

 If ((k<n) or ((k=n) and G [X [n], X [1]] 0)) then return;

}

} Until (false);

}

(4) Travelling Salesman problem

 Given a graph G = (V,E), find a cycle of edges of this graph such that all of the vertices in the graph is

 Unit-9 –Introduction to NP Completeness

 5

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms

visited exactly once with the minimum total length.

 For example, consider Figure below. There are two cycles satisfying our condition.

 They are C1 = abedcfa and C2 = acbedfa.

 For the partition problem, the sum of subset problem and the satisfiability problem, their solutions

are either "yes" or "no". They are called decision problems.

 The minimal spanning tree problem and the traveling salesperson problem are called optimization
problems.

 For an optimization problem, there is always a decision problem corresponding to it.

 For instance, consider the minimal spanning tree problem, we can define a decision version of it as
follows:

 Given a graph G, determine whether there exists a spanning tree of G whose total length is less than a
given constant c. This decision version of the minimal spanning tree can be solved after the minimal
spanning tree problem, which is an optimization problem, is solved.

 Suppose the total length of the minimal spanning tree is a. If a < c, the answer is "yes"; otherwise, its
answer is "no". The decision version of this minimal spanning tree problem is called the minimal
spanning tree decision problem. Similarly, we can define the longest common subsequence decision
problem as follows:

 Given two sequences, determine whether there exists a common subsequence of them whose length
is greater than a given constant c. We again call this decision problem the longest common
subsequence decision problem. The decision version problem will be solved as soon as the
optimization problem is solved.

 In general, optimization problems are more difficult than decision problems.

 To investigate whether an optimization problem is difficult to solve, we merely have to see whether
its decision version is difficult or not. If the decision version is difficult already, the optimization
version must be difficult.

13
 a b e 2

12
10

11

c

f d

7

5

17 5

9

	Unit-1 Basic of Algorithms and Mathematics.pdf
	Unit-2 Analysis of Algorithm.pdf
	Unit-3 Divide & Conquer 2015.pdf
	Unit-4 Dynamic Programming.pdf
	Unit-5 Greedy Algorithm 2015.pdf
	Unit-6 Exploring Graphs.pdf
	Unit-7 Backtracking and Branch and Bound.pdf
	Unit-8 String Matching.pdf
	Unit-9 Introduction to NP-Completeness.pdf

