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(1) Algorithm and Properties of Algorithm  

Algorithm 

 An algorithm is any well-defined computational procedure that takes some values or set of values as 
input and produces some values or set of values as output. 

 An algorithm is a sequence of computational steps that transform the input into the output.  

 An algorithm is a set of rules for carrying out calculation either by hand or on a machine.  

 An algorithm is an abstraction of a program to be executed on a physical machine (model of 
Computation). 

Properties of Algorithm 

 All the algorithms should satisfy following five properties, 

1) Input: There is zero or more quantities supplied as input to the algorithm. 
2) Output: By using inputs which are externally supplied the algorithm produces at least one quantity 

as output. 
3) Definiteness: The instructions used in the algorithm specify one or more operations. These 

operations must be clear and unambiguous. This implies that each of these operations must be 
definite; clearly specifying what is to be done. 

4) Finiteness: Algorithm must terminate after some finite number of steps for all cases. 
5) Effectiveness: The instructions which are used to accomplish the task must be basic i.e. the human 

being can trace the instructions by using paper and pencil in every way.  
 

(2) Mathematics for Algorithmic Set 

Set     

Unordered collection of distinct elements.  Can be represented either by property or by value.  

Set Cardinality 

 The number of elements in a set is called cardinality or size of the set, denoted |S| or sometimes n(S).  

 The two sets have same cardinality if their elements can be put into a one-to-one correspondence.  

It is easy to see that the cardinality of an empty set is zero i.e., | ø |. 

Multiset  

 If we do want to take the number of occurrences of members  into account, we call the group a 
multiset. 

 For example, {7} and {7, 7} are identical as set but {7} and {7, 7} are different as multiset.  

Infinite Set 

A set contains infinite elements. For example, set of negative integers, set of integers, etc… 

Empty Set 

Set contain no member, denoted as { } or ø. 
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Subset  

For two sets A and B, we say that A is a subset of B, written A  B, if every member of set A is also a 

member of set B. Formally, A B if  x ϵ A implies x ϵ B 

Proper Subset 

Set A is a proper subset of B, written A B, if A is a subset of B and not equal to B. That is, a set A is 

proper subset of B if A  B but A B. 

Equal Sets 

The sets A and B are equal, written A = B, if each is a subset of the other.  

Let A and B be sets. A = B if A  B and B  A. 

Power Set 

 Let A be the set. The power of A, written P(A) or 2A, is the set of all subsets of A. That is, P (A) = {B: B 

A}. 

 For example, consider A= {0, 1}.  

The power set of A is {{}, {0}, {1}, {0, 1}}. 

Union of sets  

 The union of A and B, written A  B, is the set we get by combining all elements in A and B into a 
single set.  

 That is, A  B = {x: x ϵ A or x ϵ B}. 

Disjoint sets  

 Let A and B be sets. A and B are disjoint if  A ∩ B = . 

Intersection sets 

 The intersection of set A and B, written A ∩ B, is the set of elements that are both in A and in B. That 

is, A ∩ B =  { x : x ϵ A and  x ϵ B}. 

Difference of Sets 

 Let A and B be sets. The difference of A and B is A - B = {x : x ϵ A  and   x B}. 

 For example, let A = {1, 2, 3} and B = {2, 4, 6, 8}. The set difference A - B = {1, 3} while B-A = {4, 6, 8}. 

Complement of a set 

 All set under consideration are subset of some large set U called universal set.  

 Given a universal set U, the complement of A, written A', is the set of all elements under 
consideration that are not in A. 

 Formally, let A be a subset of universal set U.  

 The complement of A in U is A' = A - U OR A' = {x: x ϵ U and   x A}. 
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Symmetric difference 

 Let A and B be sets. The symmetric difference of A and B is, 

A  B = { x : x ϵ A or  x ϵ B but not in both} 

As an example, consider the following two sets A = {1, 2, 3} and B = {2, 4, 6, 8}. The symmetric difference, 

A B = {1, 3, 4, 6, 8}. 

Sequences  

 A sequence of objects is a list of objects in some order. For example, the sequence 7, 21, 57 would be 
written as (7, 21, 57). In a set the order does not matter but in a sequence it does. 

  Repetition is not permitted in a set but repetition is permitted in a sequence. So, (7, 7, 21, 57) is 
different from {7, 21, 57}. 

 

(3) Functions & Relations 

Relation  

 Let X and Y be two sets. Any subset ρ of their Cartesian product X x Y is a relation.  

 When x Є X and y Є Y, we say that x is in relation with y according to ρ denoted as x ρ y if and only if (x, 
y) Є ρ.  

 Relationship between two sets of numbers is known as function. Function is special kind of  relation. 

 A number in one set is mapped to number in another set by the function.  
But note that function maps values to one value only. Two values in one set could map to one value but 

one value must never map to two values. 

Function  

 Consider any relation f between x and y.  

 The relation is called a function if for each x Є X, there exists one and only one y Є Y such that (x, y) Є f.  
 This is denoted as f : x → y, which is read as f is a function from x to y denoted as f(x).  

 The set X is called domain of function, set Y is its image and the set  ( ) = *  ( ) |      + is its range.  
 For example, if we write function as follows, 

 ( )     

 Then we can say that  ( ) equals to   cube. 

 For following values it gives result as, 
 (  )  (  )   

 ( )  ( )    
 ( )  ( )     

 ( )  ( )                                                                                   

This function  ( ) maps number to their cube. 

 In general we can say that a relation is any subset of the Cartesian product of its domain and co 

domain.  
 The function maps only one value from domain to its co domain while relation maps one value from 

domain to more than one values of its co domain.  
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 So that by using this concept we can say all functions are considered as relation also but not vice 
versa. 

Properties of the Relation 

 Different relations can observe some special properties namely reflexive, symmetric , transitive and 
Anti symmetric. 

Reflexive: 

 When for all values         is true then relation R is said to be reflexive.  

 E.g. the equality (=) relation is reflexive. 

Symmetric: 

 When for all values of x and y,             is true. Then we can say that relation R is symmetric. 
Equality (=) relation is also symmetric. 

Transitive: 

 When for all values of x, y and z, x R y and y R z then we can say that x R z, which is known as transitive 
property of the relation. 

 E.g. the relation grater then > is transitive relation. 

 If x>y and y>z then we can say that x>z i.e. x is greater than y and y is greater than z then x is also 
greater than z. 

Anti-symmetric: 

 When for all values of x and y if x R y and y R x implies x=y then relation R is Anti - symmetric. 
 Anti-symmetric property and symmetric properties are lookalike same but they are different.  

 E.g. consider the relation greater than or equal to   if x   y and y   x then we can say that y = x. 

 A relation is Anti-symmetric if and only if x   X and (x, x)   R. 

Equivalence Relation: 

 Equivalence Relation plays an important role in discrete mathematics. 

 Equivalent relation declares or shows some kind of equality or say equivalence. 
 The relation is equivalent only when it satisfies all following property i.e. relation must be reflexive, 

symmetric and transitive then it is called Equivalence Relation. 

 E.g. Equality ‘=’ relation is equivalence relation because equality proves above condition i.e. it is 
reflexive, symmetric and transitive. 
o Reflexive: x=x is true for all values of x. so we can say that ’=’ is reflexive.  
o Symmetric: x=y and y=x is true for all values of x and y then we can say that ‘=’ is symmetric.  
o Transitive: if x=y and y=z is true for all values then we can say that x=z. thus’ =’ is transitive.  
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(4) Quantifiers 

 There are two basic quantifiers. 

o Universal Quantification: 
P (a) is the preposition, if P (a) is give expected result for all values of a in the universe of 

discourse. The universal quantification of P (a) is denoted by,     ( ). So   is called as for all i.e. it 
is the Universal Quantifier. 

o Existential Quantification: 

P (a) is the preposition, if there exits an element a in the universe of discourse such that P (a) is 
giving expected result. Here the Existential Quantification of P (a) is represented by     ( )      

called as for some, i.e. it is Existential Quantifier. 
 

(5) Vectors and Matrices  

 A vector, u, means a list (or n-tuple) of numbers: 

u = (u1, u2, . . . , un) 

 Where ui are called the components of u. If all the ui are zero i.e., ui = 0, then u is called the zero 
vector. 

 Given vectors u and v are equal i.e., u = v, if they have the same number of components and if 
corresponding components are equal.  

Addition of Two Vectors 

 If two vectors, u and v, have the number of components, their sum, u + v, is the vector obtained by 
adding corresponding components from u and v. 

        u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn)  

                 = (u1 + v1 + u2 + v2, . . . , un + vn) 

Multiplication of a vector by a Scalar 

 The product of a scalar k and a vector u i.e., ku, is the vector obtained by multiplying each component 
of u by k: 

        ku  = k(u1, u2, . . . , un) 

             = ku1, ku2, . . . , kun 

 It is not difficult to see k(u + v) = ku + kv where k is a scalar and u and v are vectors 

Dot Product and Norm 

 The dot product or inner product of vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) is denoted by 
u.v and defined by 

u.v = u1v1 + u2v2 + . . . + unvn 

The norm or length of a vector, u, is denoted by ||u|| and defined by  
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Matrices 

 Matrix, A, means a rectangular array of numbers 

 
 The m horizontal n-tuples are called the rows of A, and the n vertical m-tuples, its columns. Note that 

the element aij, called the ij-entry, appear in the ith row and the jth column. 

Column Vector 

 A matrix with only one column is called a column vector. 

Zero Matrix 

 A matrix whose entries are all zero is called a zero matrix and denoted by 0. 

 

Matrix Addition 

 Let A and B be two matrices of the same size. The sum of A and B is written as A + B and obtained by 
adding corresponding elements from A and B. 

 

 
 

 

 

Properties of Matrix under Addition and Multiplication 

Let A, B, and C is matrices of same size and let k and I two scalars. Then 

i. (A + B) + C = A + (B + C) 

ii. A + B = B + A 

iii. A + 0 = 0 + A = A 
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iv. A + (-A) = (-A) + A = 0 

v. k(A + B) = kA + kB 

vi. (k + I)A = kA + I A 

vii. (k I)A = k(I A) 

viii. I A = A 

Matrix Multiplication 

 Suppose A and B are two matrices such that the number of columns of A is equal to number of rows 

of B. Say matrix A is an m×p matrix and matrix B is a p×n matrix. Then the product of A and B is the 
m×n matrix whose ij-entry is obtained by multiplying the elements of the i th row of A by the 

corresponding elements of the jth column of B and then adding them. 

 It is important to note that if the number of columns of A is not equal to the number of rows of B, 
then the product AB is not defined. 

Properties of Matrix Multiplication 
Let A, B, and C be matrices and let k be a scalar. Then 

i. (AB)C = A(BC) 

ii. A(B+C) = AB + AC 

iii. (B+C)A = BA + CA 

iv. k(AB) = (kB)B = A(kB) 

Transpose 

 The transpose of a matrix A is obtained by writing the row of A, in order, as columns and denoted by 
AT. In other words, if A - (Aij), then B = (bij) is the transpose of A if bij - aji for all i and j. 

 It is not hard to see that if A is an m×n matrix, then AT is an n×m matrix. 
For example if   

A = 

 

then AT = 

 

Square Matrix 

 If the number of rows and the number of columns of any matrix are same, we say matrix is a square 

matrix, i.e., a square matrix has same number of rows and columns. A square matrix with n rows and 
n columns is said to be order n and is called an n-square matrix. 

 The main diagonal, or simply diagonal, of an n-square matrix A = (aij) consists of the elements a (11), a 
(22), a (33) . . . a (mn). 

Unit Matrix 

 The n-square matrix with 1's along the main diagonal and 0's elsewhere is called the unit matrix and 
usually denoted by I. 

 The unit matrix plays the same role in matrix multiplication as the number 1 does in the usual 
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multiplication of numbers. 

A I = I A = A for any square matrix A. 
 

(6) Linear Inequalities and Linear Equations. 
Inequalities 
The term inequality is applied to any statement involving one of the symbols <, >, ≤, ≥. 

Examples of inequalities are: 

i.       x≥1  
ii.      x + y + 2z > 16  

iii.     p2 + q2 ≤1/2 
iv.     a2 + ab > 1 

Fundamental Properties of Inequalities 

1.    If a≤b and c is any real number, then a + c≤b + c. 

                            For example, -3≤-1 implies -3+4≤-1 + 4. 

2.    If a≤b and c is positive, then ac≤bc. 

                            For example, 2≤3 implies 2(4) ≤3(4). 

3.    If a≤b and c is negative, then ac≥bc. 

                            For example, 3≤9 implies 3(-2) ≥9(-2). 

4.    If a≤b and b≤c, then a≤ c. 

                            For example, -1/2≤2 and 2≤8/3 imply -1/2≤8/3. 

Solution of Inequality 

 By solution of the one variable inequality 2x + 3≤7 we mean any number which substituted for x yields 
a true statement. 

 For example, 1 is a solution of 2x + 3≤7 since 2(1) + 3 = 5 and 5 is less than and equal to 7. 

 By a solution of the two variable inequality x - y≤5 we mean any ordered pair of numbers which when 
substituted for x and y, respectively, yields a true statement. 

 For example, (2, 1) is a solution of x - y≤5 because 2-1 = 1 and 1≤5. 

 By a solution of the three variable inequalities 2x - y + z≥3 we means an ordered triple of number 
which when substituted for x, y and z respectively, yields a true statement. 

 For example, (2, 0, 1) is a solution of 2x - y + z≤3. 

 A solution of an inequality is said to satisfy the inequality. For example, (2, 1) is satisfy x - y≤5. 

Linear Equations 

One Unknown 

 A linear equation in one unknown can always be stated into the standard form 

ax = b 

 Where x is an unknown and a and b are constants. If a is not equal to zero, this equation has a unique 
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solution 

x = b/a 

Two Unknowns 

 A linear equation in two unknown, x and y, can be put into the form 

ax + by = c 

 Where x and y are two unknowns and a, b, c are real numbers. Also, we assume that a and b are no 
zero. 

Solution of Linear Equation 

 A solution of the equation consists of a pair of number, u = (k1, k2), which satisfies the equation ax + 
by = c.  

 Mathematically speaking, a solution consists of  u = (k1, k2) such that ak1 + bk2 = c.  
 Solution of the equation can be found by assigning arbitrary values to x and solving for y or assigning 

arbitrary values to y and solving for x. 

Two Equations in the Two Unknowns 

 A system of two linear equations in the two unknowns x and y is  

a1x + b1x = c1 
a2x + b2x = c2 

 Where a1, a2, b1, b2 are not zero. A pair of numbers which satisfies both equations is called a 

simultaneous solution of the given equations or a solution of the system of equations. 

 Geometrically, there are three cases of a simultaneous solution 

1. If the system has exactly one solution, the graph of the linear equations intersects in one point.  

2. If the system has no solutions, the graphs of the linear equations are parallel.  

3. If the system has an infinite number of solutions, the graphs of the linear equations coincide.  

 The special cases (2) and (3) can only occur when the coefficient of x and y in the two linear equations 
are proportional. 

 

OR     =>  a1b2 - a2b1 = 0    => = 0 

The system has no solution when 
 

 The solution to the following system can be obtained by the elimination process, whereby reduce the 

system to a single equation in only one unknown. 

a1x + b1x = c1 
a2x + b2x = c2 
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(7) Algorithm Analysis Measures and Design Techniques. 

Algorithm Analysis Measures 
 Measuring Space complexity 

 Measuring  Time complexity 

 Input size 
 Computing Best case, Average case, Worst case 

 Computing order of growth of algorithm. 

Algorithm Design Techniques 
 Divide and Conquer 
 Greedy Approach 

 Dynamic Programming 

 Branch and Bound 
 Backtracking 
Randomized Algorithm 

 

(8) Explain why analysis of algorithms is important  

 When we have a problem to solve, there may be several suitable algorithms available.  We would 
obviously like to choose the best. 

 Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.  

 Generally, by analyzing several candidate algorithms for a problem, a most efficient one can be easily 
identified. 

 Analysis of algorithm is required to decide which of the several algorithms is preferable.  
 There are two different approaches to analyze an algorithm. 

1. Empirical (posteriori) approach to choose an algorithm: Programming different competing 
techniques and trying them on various instances with the help of computer.  

2. Theoretical (priori) approach to choose an algorithm: Determining mathematically the quantity of 
resources needed by each algorithm as a function of the size of the instances considered. The 
resources of most interest are computing time (time complexity) and storage space (space 
complexity). The advantage is this approach does not depend on programmer, programming 
language or computer being used. 
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(1) The Efficient Algorithm 

 Analysis of algorithm is required to measure the efficiency of algorithm.  

 Only after determining the efficiency of various algorithms, you will be able to make a well informed 
decision for selecting the best algorithm to solve a particular problem. 

 We will compare algorithms based on their execution time. Efficiency of an algorithm means how 
fast it runs. 

 If we want to measure the amount of storage that an algorithm uses as a function of the size of the 
instances, there is a natural unit available Bit. 

 On the other hand, is we want to measure the efficiency of an algorithm in terms of time it takes to 
arrive at result, there is no obvious choice. 

 This problem is solved by the principle of invariance, which states that two different 
implementations of the same algorithm will not differ in efficiency by more than some multiplicative 
constant. 

 Suppose that the time taken by an algorithm to solve an instance of size n is never more than cn 

seconds, where c is some suitable constant.  

 Practically size of instance means any integer that in some way measures the number of components 
in an instance. 

 Sorting problem: size is no. of items to be sorted. 

 Graph: size is no. of nodes or edges or both involved. 

 We say that the algorithm takes a time in the order of n i.e. it is a linear time algorithm.  

 If an algorithm never takes more than cn2 seconds to solve an instance of size n, we say it takes time 
in the order of cn2 i.e. quadratic time algorithm.  

 Some algorithms behave as  Polynomial: (2n or nk) , Exponential :  (cn or n!), Cubic: (n3 or 5n3+n2), 
Logarithmic: (log n or n log n) 

 

(2) Worst Case, Best Case & Average Case Complexity.  

Worst Case Analysis 
 In the worst case analysis, we calculate upper bound on running time of an algorithm.  
 We must know the case that causes maximum number of operations to be executed.  

 e.g. For Linear Search, the worst case happens when the element to be searched (x in the above code) is not 
present in the array.  

 When x is not present, the search () functions compares it with all the elements of arr[] one by one.  

Average Case Analysis   
 In average case analysis, we take all possible inputs and calculate computing time for all of the inputs.  

 Sum all the calculated values and divide the sum by total number of inputs. We must know (or predict) 
distribution of cases.  

 For the linear search problem, let us assume that all cases are uniformly distributed (including the case of x 
not being present in array).  

 So we sum all the cases and divide the sum by (n+1) 

 

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
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Best Case Analysis 
 In the best case analysis, we calculate lower bound on running time of an algorithm.  
 We must know the case that causes minimum number of operations to be executed.  

 In the linear search problem, the best case occurs when x is present at the fi rst location. 

 

(3) Amortized Analysis 
 In Amortize analysis finds the time required to perform a sequence of data structure operations is 

average of overall operation performed. 

 It guarantees the average time per operation over worst case performance. 

 It is used to show the average cost of an operation. 
There are three methods of amortized analysis 

1) Aggregate Method 
 In this method we computes worst case time T(n) for n operations. 

 Amortized cost is T(n)/n per operation. 
 It gives the average performance of each operation in the worst case. 

Example: 
Operation: PUSH (X,S) POP (S) MULTI-POP (S,k) 

Worst Case: O(1) O(1) O(min(s,k)=O(n) 

  
MULTI-POP (S,k) 

1. while not STACK-EMPTY(S) & k ≠ 0 This algorithm removes 

k top elements or pops 

entire stack 

2.       do POP (S) 

3.       K=k-1 

  

o Total cost of sequence of n pop operations is O(n2). 
o The average cost is O(n)/n = O(1). 

2) Accounting Method 
 In accounting method we assign different charges to different operations. 
 The amount we charge in operation is called “amortized cost”. 

 When amortized cost > actual cost then difference is assigned to “Credit”.  

 This credit can be used when amortized cost < actual cost. 

 The total amortized cost of a sequence of operations must be an upper bound on the total cost of 

sequence. 
Ci = actual cost of ith operation ,    ̂ = amortized cost of ith operation 

∑  ̂

 

   

  ∑  

 

   

  

Example: 

Operation Actual Cost Amortized Cost 
   Amortized cost = O(n) 

 

PUSH 1 2 

POP 1 0 
MULTI-POP Min(S,k) 0 
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3) Potential Method 
 It is similar to the accounting method. 
 Instead of representing prepaid work as credit it represents prepaid work as “Potential Energy”.  

 Suppose initial data structure is D0 for n operations D0, D1, D2… Dn be the data structures let C1, C2… 
Cn denotes actual cost. 

 φ is potential function that  maps Data structure Di to a real number φ (Di) 

 ̂      (  )  (    ) 
 

(4) Asymptotic Notations. 
Asymptotic notation is used to describe the running time of an algorithm. 
It shows order of growth of function. 

Θ-Notation (Same order) 

 For a given function g(n), we denote by Θ(g(n)) the set of functions 

Θ(g(n)) = { f(n) : there exist positive constants c1, c2 and n0 such that 

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0 } 

 Because Θ(g(n)) is a set, we could write f(n) € Θ(g(n)) to indicate that f(n) is  a member of Θ(g(n)).  

 This notation bounds a function to within constant factors. We say f(n) = Θ(g(n)) if there exist 
positive constants n0, c1 and c2 such that to the right of n0 the value of f(n) always lies between c1g(n) 
and c2g(n) inclusive.  

 Figure a gives an intuitive picture of functions f(n) and g(n). For all values of n to the right of n0, the 

value of f(n) lies at or above c1g(n) and at or below c2g(n). In other words, for all n ≥ n0, the value of 
f(n) is equal to g(n) to within a constant factor.  

 We say that g(n) is an asymptotically tight bound for f(n). 

 

O-Notation (Upper Bound) 

 For a given function g(n), we denote by Ο(g(n)) the set of functions 

Ο(g(n)) = { f(n) : there exist positive constants c and n0 such that 

0 ≤  f (n) ≤ cg(n) for all n ≥ n0 } 

 We use Ο notation to give an upper bound on a function, to within a constant factor. For all values of 
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n to the right of n0, the value of the function f(n) is on or below g(n). 

 This notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) 
if there are positive constants n0 and c such that to the right of n0, the value of f(n) always lies on or 
below cg(n).  

 We say that g(n) is an asymptotically upper bound for f(n). 

 

 
 Example: 

Let f(n)=n2 and g(n)=2n 

n f(n)=n2 g(n)=2n    

1 1 2 f(n) < g(n)  Here for n ≥ 4 we have 

behavior f (n) ≤ g(n) 

Where n0=4 
2 4 4 f(n) = g(n) 

3 9 8 f(n) > g(n) 

4 16 16 f(n) = g(n) 

5 25 32 f(n) < g(n) 

6 36 64 f(n) < g(n) 

7 49 128 f(n) < g(n) 

Ω-Notation (Lower Bound) 

 For a given function g(n), we denote by Ω(g(n)) the set of functions 

Ω (g(n)) = { f(n) : there exist positive constants c and n0 such that 

0  ≤ cg(n)  ≤  f (n)for all n ≥ n0 } 

 Ω Notation provides an asymptotic lower bound. For all values of n to the right of n0, the value of 

the function f(n) is on or above cg(n). 

 This notation gives a lower bound for a function to within a constant factor. We write f(n) = Ω(g(n)) if 
there are positive constants n0 and c such that to the right of n0, the value of f(n) always lies on or 

above cg(n).  
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 Example: 
Let f(n)= 2n and g(n)= n2 

n f(n)= 2n g(n)= n2    

1 2 1 f(n) > g(n)  Here for n ≥ 4 we have 
behavior f (n) ≥ g(n) 

Where n0=4 
2 4 4 f(n) = g(n) 

3 8 9 f(n) < g(n) 

4 16 16 f(n) = g(n) 

5 32 25 f(n) > g(n) 

6 64 36 f(n) > g(n) 

7 128 49 f(n) > g(n) 
 

 

(5) Analyzing Control Statement 

Example: 1 
                   C1:     b = a * c  
Here cost of C1= O(1) as it executes once 

 

Example: 2 
 

for i=1 to n 

   

    b = a * c 

 

 

C1: n+1 [executed n time + 1 time to check wrong 

condition] 

C2: n [executed n time] 

T(n) =C1+C2   

        =n+1+n  = 2n+1 
        =O(n) 
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Example: 3 
 

for i=1 to n 

   for j=1 to n 

       b = a * c 

   end 

end 

 

 

 

  

C1: n+1 

C2: n+1  
n 

C3: n 

   

T(n) =C1+C2 +C3 
        =n+1+n(n+1)+n(n)   = 2n2+2n+1 
        =O(n2) 
 

(6) Insertion sort 
 Insertion Sort works by inserting an element into its appropriate position during each iteration. 
 Insertion sort works by comparing an element to all its previous elements until an appropriate 

position is found. 
 Whenever an appropriate position is found, the element is inserted there by shifting down remaining 

elements. 

Algorithm 

Analysis 
  The running time of an algorithm on a particular input is the number of primitive operations or 

"steps" executed. 

 A constant amount of time is required to execute each line of our pseudo code. One line may take a 
different amount of time than another line, but we shall assume that each execution of the ith line 
takes time ci, where ci is a constant. 

 The running time of the algorithm is the sum of running times for each statement executed; a 

statement that takes ci steps to execute and is executed n times will contribute cin to the total 
running time. 

 Let the time complexity of selection sort is given as T(n), then 
T(n) = C1n+ C2(n-1)+ C3(n-1)+ C4(∑   ) 

   +(C5 +C6) ∑      
   + C7(n-1). 

Procedure insert (T[1….n]) cost times 

 for i ← 2 to n do C1 n 

       x ← T[i] C2 n-1 

       j  ← i - 1 C3 n-1 

     while j > 0 and x < T[j] do C4 ∑    
     

      T[j+1] ← T[j] C5 ∑    
   -1 

       j ← j  - 1 

          end 

C6 ∑    
   -1 

 T[j + 1] ← x 

     end 

C7 n-1 



 Unit 2- Analysis of Algorithm 
 

 7 

 

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 

Where, 

∑  

 

   

 ∑   

 

   

 

Best case:  
Take j= 1 

T(n) = C1n + C2(n-1) + C3(n-1) + C4(n-1) + C5 (n-1)+ c7(n-1) 

        = (C1+C2+C3+C4+C7) n     (C2+C3+C4+C7) 

        = an     b    

  Thus,  T(n) = Θ(n) 

 
Worst case: Take j =n 

T (n) = C1n+ C2(n-1)+ C3(n-1)+ C4(∑   ) 
   +(C5 +C6) ∑      

   + C7(n-1). 

        = C1n+ C2n+ C3n+ C4
 

 
 +C5

 

 
+ C6

 

 
+ C4

   

 
+ C5

   

 
+ C6

   

 
+ C7n-C2-C3- C7. 

        = n2(C4
 

 
+ C5

 

 
+ C6

 

 
)+n(C1 +C2 +C3 +C7 + C4

 

 
+ C5

 

 
+ C6

 

 
)-1(C2 +C3 +C7). 

        = an2
 + bn + c. 

Thus,  T(n) = Θ(n2) 

Average case: Average case will be same as worst case T(n) = Θ(n2) 

Time complexity of insertion sort 

Best case Average case Worst case 
O(n) O (n2) O (n2) 
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Example: 

 

 

(7) Loop Invariant and the correctness of algorithm  
We use loop invariants to help us understand why an algorithm is correct. We must show three things 
about a loop invariant:   

1) Initialization: It is true prior to the first iteration of the loop.  
2) Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.  
3) Termination: When the loop terminates, the invariant gives us a useful property that helps show 

that the algorithm is correct.  

 When the first two properties hold, the loop invariant is true prior to every iteration of the loop.  

 Note the similarity to mathematical induction, where to prove that a property holds, you prove a 
base case and an inductive step.  

 Here, showing that the invariant holds before the first iteration is like the base case, and showing 
that the invariant holds from iteration to iteration is like the inductive step.  

 The third property is perhaps the most important one, since we are using the loop invariant to show 
correctness.  

 It also differs from the usual use of mathematical induction, in which the inductive step is used 

infinitely; here, we stop the "induction" when the loop terminates. 
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(8) Bubble sort 
 In the bubble sort, the consecutive elements of the table are compared and if the keys of the two 

elements are not found in proper order, they are interchanged.  

 It starts from the beginning of the table and continue till the end of the table. As a result of this the 
element with the largest key will be pushed to the last element’s position.  

 After this the second pass is made. The second pass is exactly like the first one except that this time 

the elements except the last are considered.  After the second pass, the next largest element will be 
pushed down to the next to last position. 

Algorithm 
 
  

 
 

 
 

 
 
 

Analysis 

T(n)=C1 (n+1) + C2  ∑ (     )
 

   
 + C3 ∑ (   )

 

   
 + C4 ∑ (   )

 

   
 

Best case:  
Take i = 1 

T(n) = C1n + C1+ C2n + C3n – C3 + C4 n – C4 

        = (C1+C2+C3+C4) n     (C2,C3,C4,C7) 

        = an     b    

  Thus,  T(n) = Θ(n) 

Worst Case: 

= C1n+ C1 + C2 n+ C2 –C2 (
 (   )

 
)  + C3n – C3 (

 (   )

 
) +C4n – C4 (

 (   )

 
)   

= [–C2/n2–C3/n2–C4/n2] +[– C2/n–C3/n–C4/n]+C1+C2+C3+C4 

= an2+bn+c 
= Θ (n2) 

Average case: Average case will be same as worst case T(n) = Θ(n2) 

Example: 
Consider the following numbers are stored in an array: 
Original Array: 32,51,27,85,66,23,13,57 

Pass 1 : 32,27,51,66,23,13,57,85 
Pass 2 : 27,33,51,23,13,57,66,85 
Pass 3 : 27,33,23,13,51,57,66,85 

Pass 4 : 27,23,13,33,51,57,66,85 

Procedure bubble (T[1….n]) cost times 

for i ← 1 to n do C1 n+1 

for i ← 1 to n-i do C2 ∑ (     )
 

   
  

if T[i] > T[j]   C3 ∑ (   )
 

   
  

T[i] ↔ T[j]   C4 ∑ (   )
 

   
  

      end   

end   
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Pass 5 : 23,13,27,33,51,57,66,85 
Pass 6 : 13,23,27,33,51,57,66,85 
 

(9) Selection sort 
 Selection Sort works by repeatedly selecting elements. 

 The algorithm finds the smallest element in the array first and exchanges it with the element in the first 
position. 

Then it finds the second smallest element and exchanges it with the element in the second position and continues 
in this way until the entire array is sorted. 

Algorithm 
 

Procedure select ( T [1….n] ) Cost times 

 for i←1 to n-1 do C1 n 

        minj ← i ; minx ← T[i] C2 n-1 

 for j←i+1 to n do C3 ∑ (   )
   

   
  

       if T[j] < minx then minj ← j C4 ∑     
     

      minx ← T[j]   C5 ∑     
     

 T[minj] ← T[i] C6 n-1 

 T[i] ← minx C7 n-1 

 Analysis 

T(n)=C1n+ C2(n-1)+ C3(∑ (   ))   
     C4(∑ ( ))   

   +C5(∑ ( )   
   )+C6(n-1)+ C7(n-1) 

       = C1n+ C2n+ C6n+ C7n+ C3
 

 
 +C4

 

 
+ C5

 

 
+ C3

   

 
+ C4

   

 
+ C5

   

 
-C2-C6-C7 

       =n(C1+ C2+ C6 +C7 + C3
 

 
+ C4

 

 
+ C5

 

 
) + n2(C3

 

 
+ C4

 

 
+ C5

 

 
)-1(C2+ C6 +C7) 

       = an2+bn+c 

Time complexity of insertion sort 
Best case Average case Worst case 

O(n2) O (n2) O (n2) 
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Example: 

 
 

(10) Heap 
 A heap data structure is a binary tree with the following properties. 

1. It is a complete binary tree; that is each level of the tree is completely filled, except possibly the 

bottom level. At this level it is filled from left to right. 

2. It satisfies the heap order property; the data item stored in each node is greater than or equal to 

the data item stored in its children node. 

Example:  

 

 Heap can be implemented using an array or a linked list structure. It is easier to implement heaps 
using arrays. 

 We simply number the nodes in the heap from top to bottom, numbering the nodes on each level 
from left to right and store the ith node in the ith location of the array. 

9 

8 4 

6 2 3 
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 An array A that represents a heap is an object with two attributes:  

i. length[A], which is the number of elements in the array, and  

ii. heap-size[A], the number of elements in the heap stored within array A.  

 The root of the tree is A[1], and given the index i of a node, the indices of its parent PARENT(i), left 
child LEFT(i), and right child RIGHT(i) can be computed simply: 

PARENT(i) 

        return ⌊i/2⌋ 

LEFT(i) 

       return 2i 

RIGHT(i) 

       return 2i + 1 

Example:  

 

 The array form for the above heap is, 

23 17 14 6 13 10 1 5 7 12 

 

 There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the 

nodes satisfy a heap property. 

  In a max-heap, the max-heap property is that for every node i other than the root, A[PARENT(i)] ≥ 
A[i] , 

 That is, the value of a node is at most the value of its parent. Thus, the largest element in a max-heap 
is stored at the root, and the sub-tree rooted at a node contains values no larger than that contained 

at the node itself.  

 A min-heap is organized in the opposite way; the min-heap property is that for every node i other 

than the root, A[PARENT(i)] ≤ A[i] . 

 The smallest element in a min-heap is at the root. 

 For the heap-sort algorithm, we use max-heaps. Min-heaps are commonly used in priority Queues. 

 Viewing a heap as a tree, we define the height of a node in a heap to be the number of edges on the 

10 9 8 

7 6 5 4 

3 2 

1 23 

17 14 

6 10 13 1 

5 7 12 
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longest simple downward path from the node to a leaf, and we define the height of the Heap to be 
the height of its root.  

 Height of an n element heap based on a binary tree is lg n 

 The basic operations on heap run in time at most proportional to the height of the tree and thus take 
O(lg n) time. 

 Since a heap of n elements is a complete binary tree which has height k; that is one node on level k, 
two nodes on level k-1 and so on… 

 There will be 2k-1 nodes on level 1 and at least 1 and not more than 2k nodes on level 0. 

Building a heap 

 For the general case of converting a complete binary tree to a heap, we begin at the last node that is 
not a leaf; apply the “percolate down” routine to convert the subtree rooted at this current root 
node to a heap. 

 We then move onto the preceding node and percolate down that subtree. 

 We continue on in this manner, working up the tree until we reach the root of the given tree. 

 We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array A*1,…,n], where 

n = length[A], into a max-heap.  

 The elements in the sub-array A[(⌊n/2⌋+1),…, n] are all leaves of the tree, and so each is a 1-element 

heap to begin with.  

 The procedure BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs 
MAXHEAPIFY on each one. 

Algorithm  

BUILD-MAX-HEAP(A) 

heap-size[A] ← length[A] 

for i ← ⌊length[A]/2⌋ downto 1 

            do MAX-HEAPIFY(A, i) 

Analysis 

 Each call to Heapify costs O(lg n) time, and there are O(n) such calls. Thus, the running time is at 
most O(n lg n) 

Maintaining the heap property 

 One of the most basic heap operations is converting a complete binary tree to a heap. Such an 
operation is called Heapify. 

 Its inputs are an array A and an index i into the array. When MAX-HEAPIFY is called, it is assumed 
that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but that A[i] may be smaller than 

its children, thus violating the max-heap property.  

 

 The function of MAX-HEAPIFY is to let the value at A[i] "float down" in the max-heap so that the sub-
tree rooted at index i becomes a max-heap. 
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Algorithm 

MAX-HEAPIFY(A, i) 

l ← LEFT(i) 

r ← RIGHT(i) 

if l ≤ heap-size[A] and A[l] > A[i] 

        then largest ← l 

else largest ← i 

if r ≤ heap-size[A] and A[r] > A[largest] 

        then largest ← r 

if largest ≠ i 

        then exchange A[i+ ↔ A[largest] 

MAX-HEAPIFY(A, largest) 

 At each step, the largest of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its index 

is stored in largest. 

  If A[i] is largest, then the sub-tree rooted at node i is a max-heap and the procedure terminates. 

 Otherwise, one of the two children has the largest element, and A[i] is swapped with A[largest], 
which causes node i and its children to satisfy the max-heap property.  

 The node indexed by largest, however, now has the original value A[i], and thus the sub-tree rooted 
at largest may violate the max-heap property. therefore, MAX-HEAPIFY must be called recursively on 
that sub-tree. 

Analysis 

 The running time of MAX-HEAPIFY on a sub-tree of size n rooted at given node i is the Θ(1) time to fix 
up the relationships among the elements A[i], A[LEFT(i)], and A[RIGHT(i)], plus the time to run MAX-

HEAPIFY on a sub-tree rooted at one of the children of node i.  

 The children's sub-trees can have size of at most 2n/3 and the running time of MAX-HEAPIFY can 
therefore be described by the recurrence 

T (n) ≤ T(2n/3) + Θ(1). 

 The solution to this recurrence is T (n) = O ( lg n).  

Heap sort 
 The heap sort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input array 

A*1,…, n], where n = length[A].  

 Since the maximum element of the array is stored at the root A[1], it can be put into its correct final 

position by exchanging it with A[n].  

 If we now "discard" node n from the heap (by decrementing heap-size[A]), we observe that A*1,…, (n 
- 1)] can easily be made into a max-heap.  

 The children of the root remain max-heaps, but the new root element may violate the max-heap 
property.  
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 All that is needed to restore the max heap property, however, is one call to MAX-HEAPIFY(A, 1), 
which leaves a max-heap in A*1,…, (n - 1)].  

 The heap sort algorithm then repeats this process for the max-heap of size n – 1 down to a heap of 
size 2. 

Algorithm 
HEAPSORT(A) 

    BUILD-MAX-HEAP(A) 

    for i ← length[A] downto 2 

                do exchange A[1] ↔ A[i] 

                heap-size[A] ← heap-size[A] - 1 

                MAX-HEAPIFY(A, 1) 

 The HEAPSORT procedure takes time O(n lg n), since the call to BUILD-MAX-HEAP takes time O(n) and 
each of the n - 1 calls to MAX-HEAPIFY takes time O(lg n). 

Example 

Here is the array: 6, 5, 3, 1, 8, 7, 2, 4 
Creating Max Heap. Inserting Node 6 in left to right 
top to bottom manner 

 

Inserting Node 5 in left to right top to bottom manner 

 

Inserting Node 3 in left to right top to bottom 

manner 

Inserting Node 7 in left to right top to bottom manner  
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Inserting Node 8 in left to right top to bottom 

manner  

Heapify node 8  

Heapify node 8 and swap with node 5  Heapify node 8  

Heapify node 8 and swap with node 6 Inserting Node 7 in left to right top to bottom manner  

Heapify node 7   Heapify node 7 and swap with node 3. 
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Inserting Node 2 in left to right top to bottom 

manner  

Inserting Node 4 in left to right top to bottom manner  

Heapify node 4  Array representation of MAX heap 

 

Select first node and swap with last node 

 

Select first node 8 and swap with last node 1 

 

    
Decrease size of heap by one Heapify new array 
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Heapify new array swap node 7 with node 1. 

 

Heapify new array swap node 7 with node 1. 

 

Select first node and swap with last node 

 

 

  

Select first node and swap with last node 

 

Decrease size of heap by one Heapify node 2 and node 6 

Swap node 6 and node 2 Heapify node 5 and node 2 

Swap node 5 with node 2 Select first node 6 and last node 1 



 Unit 2- Analysis of Algorithm 
 

 19 

 

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 

Swap first node 6 with last node 1 

 

Decrease size of heap by one 

Heapify node 5 and node 1 Swap node 5 with node 1 

Heapify node 1 with node 4 Swap node 4 with node 1 

Select first node 5 and last node 2 Swap first node 5 and last node 2 

Decrease size of heap by one

 heapify 

Heapify node 4 and node 2 
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Swap node 4 with node 2 Select first node 4 and last node 1 

Swap first node 4 with last node 1 Decrease size of heap by one 

Heapify node 1 and node 3 Swap node 3 with node 1 

Select first node 3 and last node 1 and swap it Decrease size of heap by one 

Heapify node 2 and node 1 Select first and last 
element  and swap 
it 
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Decrease size of heap by one  

  

Sorted array 

 

 

(11) Shell sort 
 Shell sort works by comparing elements that are distant rather than adjacent elements in an array.  
 Shell sort uses a sequence h1, h2… ht called the increment sequence. Any increment sequence is fine 

as long as   h1 = 1 and some other choices are better than others. 
 Shell sort makes multiple passes through a list and sorts a number of equally sized sets using the 

insertion sort. 

Example:1  54,26,93,17,77,31,44,55,20 

 
Sorted array: 17,20,26,31,44,54,55,77,93 

Example:2 3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2  
 It is arranged in an array with 7 columns (left), then the columns are sorted (right):  

Step-1 
3 7 9 0 5 1 6   3 3 2 0 5 1 5 

8 4 2 0 6 1 5     7 4 4 0 6 1 6 
7 3 4 9 8 2   8 7 9 9 8 2 

 
Step-2  

3 3 2  0 0 1 
0 5 1  1 2 2 

5 7 4  3 3 4 

4 0 6    4 5 6 

1 6 8  5 6 8 
7 9 9  7 7 9 
8 2  8 9 

 

 

 

54 26 93 
17 77 31 
44 55 20 

26 54 93 
17 31 77 
20 44 55 

17 31 55 
20 44 77 
26 54 93 

Row by Row Column by Column 
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(12) Bucket sort 
 Bucket sort runs in linear time when the input is drawn from a uniform distribution.  

 Like counting sort, bucket sort is fast because it assumes something about the input.  
 Whereas counting sort assumes that the input consists of integers in a small range, bucket sort 

assumes that the input is generated by a random process that distributes elements uniformly over 
the interval [0, 1) 

Assumption: the keys are in the range [0, N) 
Basic idea:  

1. Create N linked lists (buckets) to divide interval [0,N) into subintervals of size 1 
2. Add each input element to appropriate bucket 

3. Concatenate the buckets 

Expected total time is O(n + N), with n = size of original sequence if N is O(n) -> sorting algorithm in O(n) ! 

Algorithm 
BUCKET-SORT(A) 

1  n ← length[A] 

2  for i ← 1 to n  

3     do insert A[i] into list B[⌊n A[i]⌋] 
4  for i ← 0 to n - 1 

5     do sort list B[i] with insertion sort  

6  concatenate the lists B[0], B[1], . . ., B[n - 1]  together in 

order 

Example:  45,96,29,30,27,12,39,61,91 
Step-1 Add keys one by one in appropriate bucket queue as shown in figure 
Step-2 sort each bucket queue with insertion sort 

Step-3 Merge all bucket queues together in order 

 
After sorting : 12,27,29, 30, 39, 45, 61, 91, 96 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

27 

12 

29 

30 39 

45 

61 

96 91 



 Unit 2- Analysis of Algorithm 
 

 23 

 

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 

(13) Radix sort 
 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The 

remaining columns show the list after successive sorts on increasingly significant digit positions.  

 Shading indicates the digit position sorted on to produce each list from the previous one. 

 The code for radix sort is straightforward. The following procedure assumes that each element in the 
n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest order 

digit.  
 Given n d-digit numbers in which each digit can take on up to k possible values, RADIXSORT correctly 

sorts these numbers in Θ(d(n+ k)) time. 

Algorithm 
RADIX-SORT(A, d) 

1  for i ← 1 to d 

2     do use a stable sort to sort array A on digit i 

Example: 363, 729, 329, 873, 691, 521, 435, 297 

 

 3   6 3 

 7   2 9 

 3   2 9 

 6   9 1 

 8  7 3 

 2   9 7 

 5   2 1 

 4   3 5 

Sort  
Column-1 

 6   9 1 

 5   2 1 

 3   6 3 

 4   3 5 

 8  7 3 

 3   2 9 

 2   9 7 

 7   2 9 

Sort  
Column-2 

 

 5   2 1

 7   2 9 

 3   2 9 

 3   6 3 

 4  3 5 

 2   9 7 

 8   7 3 

 6   9 1 

Sort  
Column-3 

 

 2   9 7

 3   2 9 

 3   6 3 

 5   2 1 

 4  3 5 

 8   7 3 

 6   9 1 

 7   2 9 
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(14) Counting sort 
 Counting sort assumes that each of the n input elements is an integer in the range 0 to k, for some 

integer k.  

 When k = O(n), the sort runs in Θ(n) time.  

 The basic idea of counting sort is to determine, for each input element x, the number of elements 
less than x.  

 This information can be used to place element x directly into its position in the output array.  

Algorithm 
 

COUNTING-SORT(A, B, k) 

 1  for i ← 0 to k 

 2     do C[i] ← 0 

 3  for j ← 1 to length[A] 

 4     do C[A[j]] ← C[A[j]] + 1  

 5 //C[i] now contains the number of elements equal to i. 

 6  for i ← 1 to k 

 7     do C[i] ← C[i] + C[i - 1]  

 8 //C[i] now contains the number of elements less than or equal 
to i. 

 9  for j ← length[A] down to 1  

10     do B[C[A[j]]] ← A[j] 

11        C[A[j]] ← C[A[j]] – 1 

Example 
   

Step-1 Given input array A*1…8+ 
1 2 3 4 5 6 7 8 

3 6 4 1 3 4 1 4 
 

Step-2  Determine size of array C as maximum value in array A, here its ‘6’ 
Initialize all elements intermediate array C*1…6+ = 0 

1 2 3 4 5 6 

0 0 0 0 0 0 
 

Step-3 Update array C with occurrences of each value of array A  

1 2 3 4 5 6 

2 0 2 3 0 1 
 

Step-4 In array C from index 2 to n add value with previous element 

1 2 3 4 5 6 

2 2 4 7 7 8 
 

 
 
 

Create output array B*1…8+ 
Start positioning elements of Array A to B shown as follows  
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Step-5 Array A 
1 2 3 4 5 6 7 8 

3 6 4 1 3 4 1 4 

 
Array C 

1 2 3 4 5 6 

2 2 4 7 7 8 

 
Array B 

1 2 3 4 5 6 7 8 

      4  

  

Repeat above from element n to 1 we can have 
Array B 

1 2 3 4 5 6 7 8 

1 1 3 3 4 4 4 0 
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(1)  Divide & Conquer Technique and the general template for it. 

Divide and conquer technique 

 Many useful algorithms are recursive in structure: to solve a given problem, they call themselves 
recursively one or more times to deal with closely related sub problems.  

 These algorithms typically follow a divide-and-conquer approach: 

 The divide-and-conquer approach involves three steps at each level of the recursion: 

 Divide:  Break the problem into several sub problems that are similar to the original problem 
but smaller in size,  

 Conquer: Solve the sub problems recursively, and If the sub problem sizes are small enough, just 
solve the sub problems in a straightforward manner. 

 Combine: Combine these solutions to create a solution to the original problem. 

The general template 

 Consider an arbitrary problem, and let adhoc be a simple algorithm capable of solving the 
problem.  

 We call adhoc as basic sub-algorithm such that it can be efficient in solving small instances, but 
its performance on large instances is of no concern.  

 The general template for divide-and-conquer algorithms is as follows. 
function DC(x) 

if x is sufficiently small or simple then return adhoc(x) 
decompose x into smaller instances x1 , x2, …, xl 
for i = 1 to l do yi  DC(xi) 
recombine the YL 's to obtain a solution y for x 

return y 

 The running-time analysis of such divide-and-conquer algorithms is almost automatic.  

 Let g(n) be the time required by DC on instances of size n, not counting the time needed for the 
recursive calls.  

 The total time t(n) taken by this divide-and-conquer algorithm is given by Recurrence equation, 

 

Provided n is large enough. 

 The solution of equation is given as,  

then  

 
 The recurrence equation and its solution are applicable to find the time complexity of every 

problem which can be solved using Divide & Conquer Technique.  
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(2) Linear Search 

Sequential (Linear) search algorithm 

Function sequential ( T[1,…,n], x ) 

for i = 1 to n do 

      if T [i] ≥ x then return index i 

  return n + 1 

Analysis 

 Here we look sequentially at each element of T until either we reach to end of the array or find a 
number no smaller than x. 

 This algorithm clearly takes time in Θ (r), where r is the index returned. Θ (n) in worst case and O 
(1) in best case. 

 

(3) Divide and Conquer Technique and the use of it for Binary 

Searching Method.                         

Binary Search Method 

 Binary Search is an extremely well-known instance of divide-and-conquer approach. 

 Let T[1 . . . n] be an array of increasing sorted order; that is  T [i] ≤  T [j] whenever  1 ≤  i  ≤  j  ≤  n. 

 Let x be some number. The problem consists of finding x in the array T if it is there. 

 If x is not in the array, then we want to find the position where it might be inserted. 

Binary Search Algorithm (Iterative)  

 The basic idea of binary search is that for a given element we check out the middle element of 
the array.  

 We continue in either the lower or upper segment of the array, depending on the outcome of 
the search until we reach the required (given) element. 

 Here the technique Divide & Conquer applies. Total number of elements to be searched is 
divided in half size every time. 

Function biniter ( T[1,…,n], x ) 

i ← 1; j ← n 

while i < j do 

k ← (i + j ) ÷ 2 

if  x ≤ T [k]  then  j ← k  

      else i ← k + 1 

return i      
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Analysis  

 To analyze the running time of a while loop, we must find a function of the variables involved 
whose value decreases each time round the loop. 

 Here it is j – i + 1 

 Which we call as d. d represents the number of elements of T still under consideration. 

 Initially d = n. 

 Loop terminates when i ≥ j, which is equivalent to d ≤ 1 

 Each time round the loop there are three possibilities, 
I. Either j is set to k – 1 

II. Or i is set to k + 1 
III. Or both i and j are set to k 

 Let d and d’ stand for the value of j – i +1 before and after the iteration under consideration. 
Similarly i, j , i’ and j’. 

 Case I : if x < T [k]  
So, j ← k – 1 is executed.  
Thus i’ = i and j’ = k -1 where k = (i + j) ÷ 2 
Substituting the value of k,  j’ = [(i + j) ÷ 2] – 1 
d’ = j’ – i’ + 1 
Substituting the value of j’,  d’ = [(i + j) ÷ 2] – 1 – i + 1 
 d’ ≤ (i + j) /2 – i  
d’ ≤  (j – i)/2  ≤ (j – i + 1) / 2 
d’ ≤ d/2 

 Case II : if x > T [k]  
So, i ← k + 1 is executed 
Thus i’ = K + 1 and j’ = j  where k = (i + j) ÷ 2 
Substituting the value of k,  i’ = [(i + j) ÷ 2] + 1 
d’ = j’ – i’ + 1 
Substituting the value of I’,  d’ = j - [(i + j) ÷ 2] + 1  + 1 
 d’ ≤ j - (i + j -1) /2  ≤ (2j – i – j + 1) / 2  ≤ ( j – i + 1) / 2 
d’ ≤ d/2 

 Case III : if x = T [k]  
i = j  → d’ = 1 

 We conclude that whatever may be case, d’ ≤ d/2 which means that the value of d is at least 
getting half each time round the loop. 

 Let dk denote the value of j – i + 1 at the end of kth trip around the loop. d0 = n. 

 We have already proved that dk = dk -1 / 2 

 For n integers, how many times does it need to cut in half before it reaches or goes below 1? 

 n / 2k ≤ 1 → n ≤ 2k 

 k = lgn , search takes time. 
The complexity of biniter is Θ (lg n). 
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Binary Search Algorithm (Recursive) 

Function binsearch ( T[1,…,n], x ) 

if n = 0 or x > T[n] then return n + 1 

else return binrec ( T[1,…,n], x ) 

Function binrec( T[i,…,j], x ) 

if i = j then return i 

k ← (i + j) ÷ 2 

if x ≤ T [k] then return binrec( T[i,…,k], x ) 

                   else return binrec( T[k + 1,…,j], x ) 

Analysis  

 Let t(n) be the time required for a call on binrec( T[i,…,j], x ), where n = j – i  + 1 is the number of 
elements still under consideration in the search. 

 The recurrence equation is given as, 
t(n) = t(n/2) + Θ(1) 
Comparing this to the general template for divide and conquer algorithm, l = 1, b = 2 and k = 0. 
So, t(n) Є Θ(lg n) 

 The complexity of binrec is Θ (lg n). 
 

(4) Merge Sort and Analysis of Merge Sort 

 The divide & conquer approach to sort n numbers using merge sort consists of separating the 
array T into two parts where sizes are almost same. 

 These two parts are sorted by recursive calls and then merged the solution of each part while 
preserving the order.  

 The algorithm considers two temporary arrays U and V into which the original array T is divided. 

 When the number of elements to be sorted is small, a relatively simple algorithm is used. 

 Merge sort procedure separates the instance into two half sized sub instances, solves them 
recursively and then combines the two sorted half arrays to obtain the solution to the original 
instance. 

Algorithm for merging two sorted U and V arrays into array T 

Procedure merge(U[1,…,m+1],V[1,…,n+1],T[1,…,m+n]) 

                    i, j ← 1 

                    U[m+1], V[n+1] ← ∞ 

                for k ← 1 to m + n do  

                           if U[i] < V[j]  
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                                   then T[k] ← U[i] ; i ← i + 1 

                                    else T[k] ← V[j] ; j ← j + 1 

Algorithm merge sort 

Procedure mergesort(T[1,…,n]) 

            if n is sufficiently small then insert(T) 

            else 

                   array U[1,…,1+n/2],V[1,…,1+n/2] 

                   U[1,…,n/2] ← T[1,…,n/2] 

                   V[1,…,n/2] ← T[n/2+1,…,n] 

                  mergesort(U[1,…,n/2]) 

                  mergesort(V[1,…,n/2]) 

                  merge(U, V, T) 

Analysis  

 Let T(n) be the time taken by this algorithm to sort an array of n elements. 

 Separating T into U & V takes linear time; merge (U, V, T) also takes linear time. 

 Now, 

T(n)=T(n/2)+ T(n/2)+g(n)    where g(n) ϵ Θ(n). 

T(n) = 2t(n/2)+ Θ (n) 
Applying  the general case, l=2, b=2, k=1 

Since l = bk the second case applies which yields t(n) ϵ Θ(nlogn). 

Time complexity of merge sort is Θ (nlogn). 

Example  
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(5) Quick sort method / algorithm and its complexity. 

 Quick sort works by partitioning the array to be sorted. 

 Each Partition is internally sorted recursively. 

 As a first step, this algorithm chooses one element of an array as a pivot or a key element. 

 The array is then partitioned on either side of the pivot. 

 Elements are moved so that those greater than the pivot are shifted to its right whereas the 
others are shifted to its left.  

 Two pointers low and up are initialized to the lower and upper bounds of the sub array. 

 Up pointer will be decremented and low pointer will be incremented as per following condition. 
1. Increase low pointer until T[low] > pivot. 
2. Decrease up pointer until T[up] ≤ pivot.  
3. If low < up then interchange T[low] with T[up]. 
4. If up ≤ low then interchange T[up] with T[i]. 

Algorithm 
Procedure pivot(T[i,…,j]; var l) 
{Permutes the elements in array T[i,…,j] and returns a value l such that, at the end, i<=l<=j, 
T[k]<=p for all i ≤ k < l, T[l]=p, And T[k] > p for all l < k ≤ j, where p is the initial value T[i]} 
P ← T[i] 
K ← i; l ← j+1 
Repeat k ← k+1 until T[k] > p  
Repeat l ← l-1 until T[l] ≤ p 
While k < l do 
      Swap T[k] and T[l] 
      Repeat k ← k+1 until T[k] > p 
      Repeat l ← l-1 until T[l] ≤ p 
Swap T[i] and T[l] 

 

Procedure quicksort(T[i,…,j]) 
{Sorts subarray T[i,…,j] into non decreasing order} 
if  j – i is sufficiently small then insert (T[i,…,j]) 
else 
 pivot(T[i,…,j],l) 
quicksort(T[i,…, l - 1]) 
quicksort(T[l+1,…,j] 

Analysis 

1. Worst Case 

 Running time of quick sort depends on whether the partitioning is balanced or unbalanced. 

 And this in turn depends on which element is chosen as key or pivot element. 

 The worst case behavior for quick sort occurs when the partitioning routine produces one 
sub problem with n-1 elements and one with 0 elements. 
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 In this case recurrence will be, 
T(n)=T(n-1)+T(0)+Θ(n) 
 T(n)=T(n-1)+ Θ (n) 
 T(n)= Θ (n2) 

2. Best Case 

 Occurs when partition produces sub problems each of size n/2. 

 Recurrence equation: 
T(n)=2T(n/2)+ Θ(n) 
l = 2, b = 2, k = 1, so l = bk 
T(n)= Θ(nlogn) 

3. Average Case 

 Average case running time is much closer to the best case. 

 If suppose the partitioning algorithm produces a 9-to-1 proportional split the recurrence will 
be  

T(n)=T(9n/10)+ T(n/10)+ Θ(n) 
       Solving it, 
  T(n)= Θ(nlogn) 

 The running time of quick sort is therefore Θ(nlogn) whenever the split has constant 
proportionality. 

Example  
 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 80 60 50 7 30 100 

 
 

Pivot,i 
       

 
 
j 

Here, Pivot = T[i], k = i, l = j + 1 

Repeat k = k + 1, Until T[k] > Pivot 

  Repeat l = l – 1, Until T[l] <= Pivot 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 80 60 50 7 30 100 

 
 

Pivot 
  

 
 
k 

   

 
 
l 
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Is K < l ? , Yes then Swap T[k] <-> T[l] 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 30 60 50 7 80 100 

 
 

Pivot 
  

 
 
k 

   

 
 
l 

 

 

Repeat k = k + 1, Until T[k] > Pivot 

  Repeat l = l – 1, Until T[l] <= Pivot 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 30 60 50 7 80 100 

 
 

Pivot 
   

 
 
k 

 

 
 
l 

  

 

Is K < l ? , Yes then Swap T[k] <-> T[l] 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 30 7 50 60 80 100 

 
 

Pivot 
   

 
 
k 

 

 
 
l 

  

 

Repeat k = k + 1, Until T[k] > Pivot 

  Repeat l = l – 1, Until T[l] <= Pivot 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

40 20 10 30 7 50 60 80 100 

 
 

Pivot 
   

 
 
l 

 
 
k 
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Is K < l ? , No then Swap Pivot <-> T[l] 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

7 20 10 30 40 50 60 80 100 

    
 
 

Pivot 
    

 

Now we have two sub list one having elements less or equal Pivot and second 

having elements greater than Pivot 

[1] [2] [3] [4]  [5]  [6] [7] [8] [9] 

7 20 10 30  40  50 60 80 100 

 
 

Pivot,i 
  

 
 
j 

 
 

  
 

Pivot,i 
  

 
 
j 

 

Repeat the same procedure for each sub list until list is sorted  

 

(6) Multiplying two n digit large integers using divide and conquer 

method  

 Consider the problem of multiplying large integers.  

 Following example shows how divide and conquer helps multiplying two large integers. 

 Multiplication of 981 by 1234. First we pad the shorter operand with a non- significant zero to 
make it the same length as the longer one; thus 981 become 0981.  

 Then we split each operand into two parts:  

 0981 gives rise to w = 09 and x = 81, and 1234 to y = 12 and z = 34.  

 Notice that 981 = 102W + x and 1234 = 102y + z.  

 Therefore, the required product can be computed as 
981 x 1234 = (102w + x) * (102y + z) 

= 104wy + 102(wz + xy) + xz 
= 1080000 + 127800 + 2754 = 1210554. 

 The above procedure still needs four half-size multiplications: wy, wz, xy and xz. 

 There is no need to compute both wz and xy; all we really need is the sum of the two terms, 
consider the product 

r = (w + x) x (y + z) = wy + (wz + xy) + xz. 

 After only one multiplication, we obtain the sum of all three terms needed to calculate the 
desired product.  

 This suggests proceeding as follows. 
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p = wy = 09 x 12 =108 
q = xz = 81 x 34 = 2754 
r = (w + x) x (y + z) =90x46 = 4140, 

 and finally 
981 x 1234 = 104p + 102 (r - p - q) + q 
= 1080000 + 127800 + 2754 1210554. 

 Thus the product of 981 and 1234 can be reduced to three multiplications of two-figure 
numbers (09 x 12, 81 x 34 and 90 x 46) together with a certain number of shifts (multiplications 
by powers of 10), additions and subtractions. 

 It thus seems reasonable to expect that reducing four multiplications to three will enable us to 
cut 25% of the computing time required for large multiplications.  

 We obtain an algorithm that can multiply two n-figure numbers in a time, 
T(n)= 3t (n /2) + g(n),  when n is even and sufficiently large. 

 

 Solving it gives, 

 
 

(7) Multiplying two square matrices and Strassen’s Algorithm for 

matrix multiplication  

 Consider the problem of multiplying two n × n matrices. Computing each entry in the product 
takes n multiplications and there are n2 entries for a total of O(n3 ) work.  

 Strassen devised a better method which has the same basic flavor as the multiplication of long 
integers.  

 The key idea is to save one multiplication on a small problem and then use recursion. 

 First we show that two 2 x 2 matrices can be multiplied using less than the eight scalar 
multiplications apparently required by the definition. Let A and B are two matrices to be 
multiplied. 

       

 Consider the following operations, each of which involves just one multiplication. 
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 The required product AB is given by the following matrix. 

 

 It is therefore possible to multiply two 2 x 2 matrices using only seven scalar multiplications.  

 Let t (n) be the time needed to multiply two n x n matrices by recursive use of equations. 

 Assume for simplicity that n is a power of 2. Since matrices can be added and subtracted in a 
time in 0(n2 ), 

t(n)= 7t(n/2) + g(n) 
 Where g (n) ϵ 0 (n2). This recurrence is another instance of our general analysis for divide-and-

conquer algorithms.  

 The general equation applies with l = 7, b = 2 and k = 2. 

 Since l > bk, the third case yields t(n) ϵ  0(nlg7).  
 Square matrices whose size is not a power of 2 are easily handled by padding them with rows 

and columns of zeros, at most doubling their size, which does not affect the asymptotic running 
time.  

 Since lg7 < 2.81, it is thus possible to multiply two n x n matrices in a time in 0(n2.81), provided 

scalar operations are elementary. 
 

(8) Exponentiation 

 Let a and n be two integers. We wish to compute the exponentiation x = an. For simplicity, 

assume that n > 0. If n is small, the obvious algorithm is adequate. 

Exponentiation using Sequential Approach  

function exposeq(a, n) 

r   a 

for i  1 to n - 1 do  

r a * r 

return r 

 This algorithm takes a time in Θ(n) since the instruction r  a * r is executed exactly  n-1 times, 
provided the multiplications are counted as elementary operations. 

 If we wish to handle larger operands, we must take account of the time required for each 
multiplication.  

 Let M(q, s) denote the time needed to multiply two integers of sizes q and s.  

 Assume for simplicity that q1 ≤ q2 and s1 ≤ s2 imply that M(q1, s1 ) ≤ M(q2 ,s2).  

 Let us estimate how much time our algorithm spends multiplying integers when exposeq(a, n) 
is called.  
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 Let m be the size of a. First note that the product of two integers of size i and j is of size at least 
i + j - 1 and at most i + j;  

 Let ri and mi be the value and the size of r at the beginning of the i-th time round the loop.  

 Clearly, r1 = a and therefore m1 = m.  

 Since ri+1 = a * ri, the size of ri+1 is at least m + mi -1 and at most m + mi.  

 Therefore, the multiplication performed the i-th time round the loop concerns an integer of 
size m and an integer whose size is between im - i + 1 and im, which takes a time between 
M(m, im - i + 1) and M(m, im).  

 The total time T(m, n) spent multiplying when computing an with exposeq is therefore, 

 
 Where m is the size of a. If we use the classic multiplication algorithm, then M (q, s) ϵ Θ (q 

s).Let c be a constant such that M(q, s) ≤ c qs so, 

 

 
 Thus T(m, n) ϵ Θ (m2 n2 )  

 If we use the divide-and-conquer multiplication algorithm, M(q, s) ϵ Θ  (s qlg3) when s > q, and a 

similar argument yields T(m, n) ϵ Θ (mlg3 n2). 

Exponentiation using Divide & Conquer Technique 

 The key observation for improving exposeq is that an =  (an/ 2 )2 when n is even. This yields the 
following recurrence. 

 
function expoDC(a, n) 

if n = 1 then return a 
if n is even then return [expoDC(a, n/2)]2 
return a * expoDC(a, n - 1) 

 To analyze the efficiency of this algorithm, we first concentrate on the number of 
multiplications (counting squaring as multiplications) performed by a call on expoDC(a, n).  

 The number of multiplications is a function only of the exponent n; let us denote it by N(n).  

 No multiplications are performed when n = 1, so N(1)= 0.  

 When n is even, one multiplication is performed (the squaring of an/2) in addition to the N(n/2) 
multiplications involved in the recursive call on expoDC(a, n/2).  
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 When n is odd, one multiplication is performed (that of a by an-1) in addition to the N(n -1) 
multiplications involved in the recursive call on expoDC (a, n - 1). Thus we have the following 
recurrence. 

 
 To handle such a recurrence, it is useful to bind the function from above and below with non-

decreasing functions. When n > 1 is odd, 
N(n)= N(n - 1) + 1 = N((n - 1)/2) + 2 = N([n/2])+2. 

 On the other hand, when n is even, N(n)= N(n/2))+1  since Ln/2J = n/2 in that case. Therefore,  

N(Ln/2˩) + 1 ≤ N(n) ≤ N(Ln/2˩) + 2  

           for all n > 1.  

 
 Let M (q, s) denote again the time needed to multiply two integers of sizes q and s, and let T(m, 

n) now denote the time spent multiplying by a call on expoDC(a, n), where m is the size of a. 

Recall that the size of ai is at most im. 

 Inspection of the algorithm expoDC yields the following recurrence. 

 
with the recurrence for N, this implies, 

 
For all n > 1. 

 Solving it gives,  

 
 Where, α = 2 with classic multiplication algorithm and, α = lg3 with divide & conquer 

 To summarize, the following table gives the time to compute an, where m is the size of a, 
depending whether we use exposeq or expoDC, and whether we use the classic or divide-and-
conquer (D&C) multiplication algorithm. 

 

 Classic D & C 

exposeq 
  

expoDC 
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(1) Introduction of dynamic programming 
 Dynamic programming, like the divide-and-conquer method, solves problems by combining the 

solutions to sub problems.  

 Divide-and-conquer algorithms partition the problem into independent sub problems, solve the sub 
problems recursively, and then combine their solutions to solve the original problem.  

 In contrast, dynamic programming is applicable when the sub problems are not independent, that is, 

when sub problems share sub problems.  
 In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving 

the common sub problems.  
 A dynamic-programming algorithm solves every sub problem just once and then saves its answer in a 

table, thereby avoiding the work of recomputing the answer every time the sub problem is 
encountered. 

 The development of a dynamic-programming algorithm can be broken into a sequence of four steps.  
1. Characterize the structure of an optimal solution.  
2. Recursively define the value of an optimal solution.  
3. Compute the value of an optimal solution in a bottom-up fashion. 
4. Construct an optimal solution from computed information. 

 

(2) Principle of optimality 

 The dynamic programming algorithm obtains the solution using principle of optimality.  

 The principle of optimality states that “in an optimal sequence of decisions or choices, each 
subsequence must also be optimal”. 

 When it is not possible to apply the principle of optimality it is almost impossible to obtain the 
solution using the dynamic programming approach. 

 The principle of optimality: “If k is a node on the shortest path from i to j, then the part of the path 

from i to k, and the part from k to i, must also be optimal.” 
 

(3) Binomial coefficient  
Consider the problem of calculating binomial coefficient  

(
 

 
)  {

                                      

(
   

   
*  (

   

 
*          

                                             

 

Suppose 0 ≤ k ≤ n. if we calculate ( 
 
) directly by 

 
function C(n, k) 

   if k=0 or k=n then return 1 

   else return C(n-1, k-1)+ C(n-1, k) 

 

Many of the values C(i, j), i < n, j < k, are calculated over and over, for example the algorithm calculates 

C(5,3) as sum of C(4,2) and C(4,3) Both these intermediate results require us to calculate C(3,2). Similarly 
the value of C (2,2) is used several times. 
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(4) Making change problem using dynamic programming  
 

Algorithm 
function coins (N ) 

{Gives the minimum number og coins needed to make change for N units. 

Array d[1..n] specifies the coinage: in the example there are coins for 

1, 4 and 6 units.} 

array d[1..n] =[1, 4, 6] 

array c[1..n,0..N] 

for i←1 to n do c[i,0]←0 

for i←1 to n do  

     for j←1 to N do  

          c[i,j]←if i=1 and j < d[i] then +∞ 

                     else if i=1 then 1+ c[1,j-d[1]] 

                     else if j < d[i] then c[i-1,j] 

                     else min (c[i-1,j],1+ c[1,j-d[i]] 

return c[n,N] 

 

 We need to generate table c[n][N]. Where, 

 n= number of denominations. Here we are having 3 denomination so n=3. 

 N= number of units that you need to make change. Here we need change of 8 units so N=8 
 To generate table c[i][j] use following steps 

Step-1:  Make c[i][0]=0 for 0 < i ≤n 

Step-2:  Repeat step-2 to step-4 for remaining matrix Values 

  if i=1 then c[i][j] = 1+c[1][j-d1], here d1=1 

Step-3:  if j<di then c[i][j] = c[i-1][j] 

Step-4   otherwise c[i][j] = min(c[i-1][j],1+c[i][j-di] 

 

 Example:   Denominations: d1=1, d2=4, d3=6. Make a change of Rs. 8.  

 c[i][j]= 
i ↓ j → 0 1 2 3 4 5 6 7 8 

1 d1=1 0 1 2 3 4 5 6 7 8 

2 d2=4 0 1 2 3 1 2 3 4 2 

3 d3=6 0 1 2 3 1 2 1 2 2 

 
We need minimum C[3][8]=2 coins for change 
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 c[1][1]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 

     c[1][1]=1+c[1][1-1] 
=1+c[1][0] 

=1 

 c[1][2]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 

c[1][2]=1+c[1][2-1] 
=1+c[1][1] 

=2 
 c[1][3]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 

c[1][3]=1+c[1][3-1] 
=1+c[1][2] 

=3 

 c[1][4]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 

c[1][4]=1+c[1][4-1] 
=1+c[1][3] 

=4 

 c[1][5]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 
c[1][5]=1+c[1][5-1] 

=1+c[1][4] 
=5 

 c[1][6]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 
c[1][6]=1+c[1][6-1] 

=1+c[1][5] 
=6 

 c[1][7]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 
c[1][7]=1+c[1][7-1] 

=1+c[1][6] 
=7 

 c[1][8]  here, i=1  so use, c[i][j]=1+c[1][j-d1] 
c[1][8]=1+c[1][8-1] 

=1+c[1][7] 
=8 

 c[2][1] here j<d2(1<4) so use,  c[i][j]=c[i-1][j] 

c[2][1]=c[2-1][1] 
=1 

 c[2][2] here j<d2(2<4) so use, c[i][j]=c[i-1][j] 

c[2][2]=c[2-1][2] 
=2 

 c[2][3] here j<d2(3<4) so use, c[i][j]=c[i-1][j] 
c[2][3]=c[2-1][3] 
=3 

 c[2][4]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 
c[2][4]=min( c[1,4], 1+c[2,4-4]) 
=min(4,1+0) 
=1 

 c[2][5]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 

c[2][5]=min( c[1,5], 1+c[2,5-4]) 
=min(5,1+1) 
=2 

 c[2][6]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 

c[2][6]=min( c[1,6], 1+c[2,6-4]) 
=min(6,1+2) 
=3 

 c[2][7]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 
c[2][7]=min( c[1,7], 1+c[2,7-4]) 
=min(7,1+3) 

=4 

 c[2][8]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 
c[2][8]=min( c[1,8], 1+c[2,8-4]) 
=min(8,1+1) 

=2 

 c[3][1] here j<d3(1<6) so use c[i][j]=c[i-1][j] 
c[3][1]=c[3-1][1] 
=1 

 c[3][2] here j<d3(2<6) so use c[i][j]=c[i-1][j] 
c[3][2]=c[3-1][2] 
=2 

 c[3][3] here j<d3(3<6) so use c[i][j]=c[i-1][j] 
c[3][3]=c[3-1][3] 

=3 

 c[3][4] here j<d3(4<6) so use c[i][j]=c[i-1][j] 
c[3][4]=c[3-1][4] 

=1 

 c[3][5] here j<d3(5<6) so use c[i][j]=c[i-1][j] 
c[3][5]=c[3-1][5] 
=2 

 c[3][6]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 
c[3][6]=min( c[2,6], 1+c[3,6-6]) 
=min(3,1+0) 
=1 
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 c[3][7]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 

c[3][7]=min( c[2,7], 1+c[3,7-6]) 
=min(4,1+1) 

=2 

 c[3][8]  use c[i][j]=min(c[i-1][j], 1+c[i][j-di] 

c[3][8]=min( c[2,8], 1+c[3,8-6]) 
=min(2,1+2) 

=2 
 

 

(5) Assembly line scheduling using dynamic programming  

 Each line has n stations: S1,1, . . . , S1,n and S2,1, . . . , S2,n 

 Corresponding stations S1, j and S2, j perform the same function but can take different amounts of time 
a1, j and a2, j  

 Entry times are: e1 and e2; exit times are: x1 and x2 

 After going through a station, can either: 
– stay on same line at no cost, or  
– transfer to other line: cost after Si,j is ti,j , j = 1, . . . , n – 1 

Steps: 
f* : the fastest time to get through the entire factory 

fi[j] : the fastest time to get from the starting point through station Si,j 
   
  f* = min (f1[n] + x1, f2[n] + x2) 

Base case:  j = 1, i=1,2 (getting through station 1) 
      f1[1] = e1 + a1,1 
   f2[1] = e2 + a2,1 

General Case: j = 2, 3, …,n, and i = 1, 2 
Fastest way through S1, j is either: 

– the way through S1, j - 1 then directly through S1, j, or 

  f1[j - 1] + a1,j 

– the way through S2, j - 1, transfer from line 2 to line 1, then 

through S1, j  

    f2[j -1] + t2,j-1 + a1,j 

f1    {
                                                                                            

                                                      
 

f2    {
                                                                                            

                                                     
 

 

f* = min (f1[n] + x1, f2[n] + x2) 
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 1 2 3 4 5 6 
f*=min (35+3, 37+2) 
   = 38 

f1[j] 9 18 20 24 32 35 

f2[j] 12 16 22 25 30 37 
 

 f1[1]  here, j=1  so use, f1[1]  = e1 + a1,1 
    f1[1]  = 2 + 7   =9 

 f2[1]  here, j=1  so use, f2[1]  = e2 + a2,1 
    f1[1]  = 4 + 8   =12 

 f1[2]  here, j=2  so use,  
f1[2]  = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) 

              = min(9+9, 12+2+9)  = 18 

 f2[2]  here, j=3  so use,  
f2[1]  =min(f2[j - 1] + a2,j ,f1[j -1] + t1,j-1 + a2,j) 

          = min (12+5, 9+2+5)  = 16 

Repeating same formula for  f1*3+… f1[6] and f2*3+… f2[6] 

 f*=min (f1[n] + x1, f2[n] + x2) 
     =min (35+3, 37+2)      = 38 
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(6) 0/1 knapsack problem using dynamic programming  

 We need to generate table V(1…n,0…W) where, n= number of objects. Here n=5 
 W= capacity of knapsack. Here W=11 

 To generate table V[i][j] use following steps 
Step-1: Make V[i][0] = 0 for 0 < i ≤n 

Step-2: if j <  i  then take V[i][j] = V[i-1][j] 

Step-3: if j ≥  i   then take V[i][j] = max(V[i-1][j], V[i-1][j- i]+Vi) 

 Solution:  V[i][j]= 

   
j 

→ 
0 1 2 3 4 5 6 7 8 9 10 11 

  
i 

↓ 
0 0 0 0 0 0 0 0 0 0 0 0 0 

 V1  1 0 1 1 1 1 1 1 1 1 1 1 1 

 V2  2 0 1 6 7 7 7 7 7 7 7 7 7 

 V3  3 0 1 6 7 7 18 19 24 25 25 25 25 

 V4  4 0 1 6 7 7 18 22 24 28 29 29 40 

 V5  5 0 1 6 7 7 18 22 28 29 34 35 40 

 
 V[0][j] =0 where j=0 to W, here W=11 

so, V[0][0]=0,V[0][1]=0, V[0][2]=0, V[0][3]=0, 
V[0][4]=0 

V[0][5]=0, V[0][6]=0, V[0][7]=0, V[0][8]=0, 

V[0][9]=0 
V[0][10]=0, V[0][10]=0, V[0][11]=0 

 V[i][0] =0 where i= 0 to n, here n=5 

so, V[0][0]=0,V[1][0]=0, V[2][0]=0, V[3][0]=0, 
V[4] [0]=0 

V[5] [0]=0 

 

 V[1][1], here i=1,j=1, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][1]=max(V[0][1],V[0][0]+v1) 
            =max(0,1+0) 
            =1 

 V[1][2], here i=1,j=2, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][2]=max(V[0][2],V[0][1]+v1) 
            =max(0,0+1) 
            =1 

 V[1][3], here i=1,j=3, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][3]=max(V[0][3],V[0][2]+v1) 

            =max(0,0+1) 
            =1 

 V[1][4], here i=1,j=4, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][4]=max(V[0][4],V[0][3]+v1) 

            =max(0,0+1) 
            =1 
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 V[1][5], here i=1,j=5, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][5]=max(V[0][5],V[0][4]+v1) 

            =max(0,0+1) 
            =1 

 V[1][6], here i=1,j=6, v1so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j- i]+vi) 
V[1][5]=max(V[0][6],V[0][5]+v1) 

            =max(0,0+1) 
            =1 

Same Procedure for because  j>= 

V[1][7]=1, V[1][8]=1, V[1][9]=1, V[1][10]=1, V[1][11]=1, 

 V[2][1], here i=2,j=1, v2so j<

use V[i][j]= V[i-1][j] 
V[2][1]=V[1][1] 
            =1 

 V[2][2], here i=2,j=2, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[2][2] =max(V[1][2],V[1][0]+v2) 
             =max(1,0+6) 
             =6 

 V[2][3], here i=2,j=3, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[2][3] =max(V[1][3],V[1][1]+v2) 
            =max(1,1+6) 
            =7 

 V[2][4], here i=2,j=4, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[2][4] =max(V[1][4],V[1][2]+v2) 
             =max(1,1+6) 
             =7 

 V[2][5], here i=2,j=5, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 

V[2][5] =max(V[1][5],V[1][3]+v2) 
             =max(1,1+6) 

             =7 

 V[2][6], here i=2,j=6, v2so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 

V[2][5] =max(V[1][6],V[1][4]+v2) 
             =max(1,1+6) 

             =7 

Same Procedure for below like V[2][6] , because  j>= 
V[2][7]=7, V[2][8]=7, V[2][9]=7, V[2][10]=7, V[2][11]=7 

 V[3][1], here i=3,j=1,5 v3so j<

use V[i][j]= V[i-1][j] 
V[3][1]=V[2][1] 
            =1 

 V[3][2], here i=3,j=2, 5 v3so j<

use V[i][j]= V[i-1][j] 
V[3][2]=V[2][2] 
            =6 

 V[3][3], here i=3,j=3, 5 v3so j<

use V[i][j]= V[i-1][j] 
V[3][3]=V[2][3] 

            =7 

 V[3][4], here i=3,j=4, 5 v3so j<

use V[i][j]= V[i-1][j] 
V[3][3]=V[2][4] 

            =7 

 V[3][5], here i=3,j=5, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][5] =max(V[2][5],V[2][0]+v3) 
             =max(7,0+18) 
             =18 

 V[3][6], here i=3,j=6, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][6] =max(V[2][6],V[2][1]+v3) 
             =max(7,1+18) 
             =19 

 V[3][7], here i=3,j=7, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][7] =max(V[2][7],V[2][2]+v3) 
             =max(7,6+18) 
             =24              

 V[3][8], here i=3,j=7, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][8] =max(V[2][8],V[2][3]+v3) 
             =max(7,7+18) 
             =25              
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 V[3][9], here i=3,j=9, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][9] =max(V[2][9],V[2][4]+v3) 

             =max(7,7+18) 
             =25              

 V[3][10], here i=3,j=10, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][10] =max(V[2][10],V[2][5]+v3) 

               =max(7,7+18) 
               =25              

 V[3][11], here i=3,j=11, 5 v3so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[3][11] =max(V[2][11],V[2][6]+v3) 

                =max(7,7+18) 
                =25              


 V[4][1], here i=4,j=1,6 v422 so j<

use V[i][j]= V[i-1][j] 
V[4][1]=V[3][1] 

            =1 

 V[4][2], here i=4,j=2,6 v422so j<

use V[i][j]= V[i-1][j] 

V[4][2]=V[3][2] 
            =6 

 V[4][3], here i=4,j=3,6 v422so j<

use V[i][j]= V[i-1][j] 
V[4][3]=V[3][3] 
            =7 

 V[4][4], here i=4,j=4,6 v422so j<

use V[i][j]= V[i-1][j] 
V[4][4]=V[3][4] 
            =7 

 V[4][5], here i=4,j=5,6 v422so j<

use V[i][j]= V[i-1][j] 
V[4][5]=V[3][5] 
            =18 

 V[4][6], here i=4,j=6, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][6] =max(V[3][6],V[3][0]+v4) 
             =max(19,0+22) 

             =22 

 V[4][7], here i=4,j=7, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][7] =max(V[3][7],V[3][1]+v4) 
             =max(24,1+22) 

             =24 

 V[4][8], here i=4,j=8, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][8] =max(V[3][8],V[3][2]+v4) 

             =max(25,6+22) 
             =28 

 V[4][9], here i=4,j=9, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][9] =max(V[3][9],V[3][3]+v4) 

             =max(25,7+22) 
             =29 

 V[4][10], here i=4,j=10, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][10] =max(V[3][10],V[3][4]+v4) 
               =max(25,7+22) 
               =29 

 V[4][11], here i=4,j=11, 6 v422so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[4][11] =max(V[3][11],V[3][5]+v4) 
               =max(25,18+22) 
               =40 

 V[5][1], here i=4,j=1,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][1]=V[4][1] 
            =1 

 V[5][2], here i=4,j=2,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][2]=V[4][2] 
            =6 

 V[5][3], here i=4,j=3,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][3]=V[4][3] 
            =7 

 V[5][4], here i=4,j=4,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][4]=V[4][4] 
            =7 
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 V[5][5], here i=4,j=5,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][5]=V[4][5] 

            =18 

 V[5][6], here i=4,j=6,7 v528 so j<

use V[i][j]= V[i-1][j] 
V[5][5]=V[4][6] 

            =22 

 V[5][7], here i=5,j=7, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 

V[5][7] =max(V[4][7],V[4][0]+v4) 
             =max(24,0+28) 

             =28 

 V[5][8], here i=5,j=8, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 

V[5][8] =max(V[4][8],V[4][1]+v4) 
             =max(28,1+28) 

             =29 

 V[5][9], here i=5,j=9, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[5][9] =max(V[4][9],V[4][2]+v4) 
             =max(29,6+28) 
             =34 

 V[5][10], here i=5,j=10, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[5][10] =max(V[4][10],V[4][3]+v4) 
                =max(29,7+28) 
                =35 

 V[5][11], here i=5,j=11, 7 v428so j>=

use V[i][j]=max(V[i-1][j], V[i-1][j-i]+vi) 
V[5][11] =max(V[4][11],V[4][3]+v4) 

                =max(40,7+28) 
                =40 

 

  

(7) All point shortest path Floyd algorithm  
 

Algorithm 
     function Floyd(L[1..n, 1..n]) :array [1..n, 1..n] 

      array D[1..n, 1..n] 

      D ← L 

      for k  ← 1 to n do 

           for i  ← 1 to n do 

               for j ← 1 to n do 

                 D[i,j] ← min(D[i,j], D[i,k]+ D[k,j]) 

     return D 

– We construct a matrix D that gives the length of shortest path between each pair of nodes. 
– The algorithm initializes D to L, that is, to the direct distances between nodes. It then does n 

iterations, after iteration k, D gives length of the shortest paths that only use nodes in {1, 2… k} as 
intermediate nodes.  

– After n iterations, D therefore gives the length of shortest paths using any of the nodes in N as an 
intermediate node. 

– If Dk represents the matrix D after k th iteration it can be implemented by 
   Dk [i,j] = min(Dk-1 [i,j], Dk-1 [i,k]+ Dk-1 [k,j]) 

– We use principle of optimality to compute length from i to j passing through k. 
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Example  

  
 

D0=(

    
      
      
     

) 

– Creating matrix D0 contains distance between 

each node with ‘0’ as intermediate node. 

D1=(

    
      
       
      

) 

– Updating matrix D1 which contains distance 

between each node with ‘1’ as intermediate 
node. 

– Update distance if minimum distance value 
than existing distance value found. 

– Here distance (3, 2) is updated from ∞ to 35 
and distance (4, 2) is updated from ∞ to 20.  
 

D2=(

      
      
       
      

) 

– Updating matrix D2 contains distance between 
two nodes with ‘2’ as intermediate node. 

– Update distance if minimum distance value 
than existing distance value found. 

– Here distance (1, 3) is updated from ∞ to 20 

and distance (1, 4) is updated from ∞ to 10. 
 

D3=(

      
      
       
      

) 

– Updating matrix D3 contains distance between 
two nodes with ‘3’ as intermediate node. 

– Update distance if minimum distance value 
than existing distance value found. 

– Here distance (2, 1) is updated from 50 to 45  
 

D4=(

      
      
       
      

) 

– Updating matrix D4 contains distance between 
two nodes with ‘4’ as intermediate node. 

– Update distance if minimum distance value 

than existing distance value found. 
– Here distance (1, 3) is updated from 20 to 15; 

distance (2, 1) is updated from 45 to 20 and 
distance (2, 3) is updated from 15 to 10 
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(8) Matrix chain multiplication using dynamic programming  

 Matrix table M[i][j] stores cost of multiplications  
 Matrix chain orders table S[i][j] stores order of multiplication 

 To generate M[i][j] use following steps 

Step-1 if i = j then M[i][j] = 0 

Step-2 if i < j then M[i][j] = min( M[i][k]+M[k+1][j]+P[i-1]* P [k]* P [j]) with i ≤ k < j 

Example:  

      Here dimensions are  p0=5,p1=4,p2=6,p3=2,p4=7 
 For  i  = j M[i][j]=0 

M[1][1]=0,M[2][2]=0,M[3][3]=0,M[4][4]=0 
 
For i > j we does not calculate  cost 
so M[i][j] will be blank for I > j 

 M[1][2], here i < j for i=1,j=2  

k=1 because i ≤ k ≤ j-1 
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  
For k=1 
M[1][2]=M[1][1]+M[2][2]+p0*p1*p2 

              = 0+0+5*4*6 
              =120 
Put value of minimum value of M[1][2] in table 

M[i][j] and put value of k in table S[i][j]. 

M[i][j]= 

 1 2 3 4 

1 0    

2 - 0   

3 - - 0  

4 - - - 0 
 

 
S[i][j]= 

 1 2 3 4 

1 0    

2 - 0   

3 - - 0  

4 - - - 0 
 

M[i][j]= 

 1 2 3 4 

1 0 120   

2 - 0   

3 - - 0  

4 - - - 0 
 

 
S[i][j]= 

 1 2 3 4 

1 0 1   

2 - 0   

3 - - 0  

4 - - - 0 
 

 M[2][3], here i < j for i=1,j=2  

k=2 because i ≤ k ≤ j-1  
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  

For k=2 
M[2][3]=M[2][2]+M[3][3]+p1*p2*p3 

              = 0+0+4*6*2 
              =48 
Put value of minimum value of M[2][3] in table 

M[i][j] and put value of k in table S[i][j] 

 M[3][4], here i < j for i=3,j=4  

k=3 because i ≤ k ≤ j-1  
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  

For k=3 
M[3][4]=M[3][3]+M[4][4]+p2*p3*p4 

              = 0+0+6*2*7 
              =84 
Put value of minimum value of M[3][4] in table 

M[i][j] and put value of k in table S[i][j] 
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M[i][j]= 

 1 2 3 4 

1 0 120   

2 - 0 48  

3 - - 0  

4 - - - 0 
 

S[i][j]= 

 1 2 3 4 

1 0 1   

2 - 0 2  

3 - - 0  

4 - - - 0 
 

M[i][j]= 

 1 2 3 4 

1 0 120   

2 - 0 48  

3 - - 0 84 

4 - - - 0 
 

S[i][j]= 

 1 2 3 4 

1 0 1   

2 - 0 2  

3 - - 0 3 

4 - - - 0 

  

 M[1][3], here i < j for i=1,j=3  
k=1 or 2  because i ≤ k ≤ j-1 
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  
For k=1 
M[1][3]=M[1][1]+M[2][3]+p0*p1*p3 

              = 0+48+5*4*2 

              =88 
For k=2 

M[1][3]=M[1][2]+M[3][3]+p0*p2*p3 

              =120+0+5*6*2 

              =180 
Put value of minimum value of M[1][3] in table 
M[i][j] 
And put value of k in table S[i][j] 

 M[2][4], here i < j for i=2,j=4  
k=2 or 3  because i ≤ k ≤ j-1 
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  
For k=2 
M[2][4]=M[2][2]+M[3][4]+p1*p2*p4 

              = 0+84+4*6*7 

              =252 
For k=3 

M[2][4]=M[2][3]+M[4][4]+p1*p3*p4 

              = 48+0+4*2*7 

              =104 
Put value of minimum value of M[1][3] in table 
M[i][j] 
And put value of k in table S[i][j] 

M[i][j]= 

 1 2 3 4 

1 0 120 88  

2 - 0 48  

3 - - 0 84 

4 - - - 0 
 

S[i][j]= 

 1 2 3 4 

1 0 1 1  

2 - 0 2  

3 - - 0 3 

4 - - - 0 
 

M[i][j]= 

 1 2 3 4 

1 0 120 88  

2 - 0 48 104 

3 - - 0 84 

4 - - - 0 
 

S[i][j]= 

 1 2 3 4 

1 0 1 1  

2 - 0 2 3 

3 - - 0 3 

4 - - - 0 
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 M[1][4], here i < j for i=1,j=4  

k=1 or 2 or 3  because i ≤ k ≤ j-1 
Use M[i][j] =min( M[i][k]+M[k+1][j]+P[i-1]*p[k]*p[j])  

For k=1 
M[1][4]=M[1][1]+M[2][4]+p0*p1*p4 

              = 0+104+5*4*7 
              =244 

For k=2 

M[1][4]=M[1][2]+M[3][4]+p0*p2*p4 

              = 120+84+5*6*7 

              =414 
For k=3 

M[1][4]=M[1][3]+M[4][4]+p0*p3*p4 

              = 88+0+5*2*7 

              =158 
Put value of minimum value of M[1][3] in table 

M[i][j] 
And put value of k in table S[i][j] 

M[i][j]= 

 1 2 3 4 

1 0 120 88 158 

2 - 0 48 104 

3 - - 0 84 

4 - - - 0 
 

S[i][j]= 

 1 2 3 4 

1 0 1 1 3 

2 - 0 2 3 

3 - - 0 3 

4 - - - 0 

  

 
PRINT_OPTIMAL (A, i, j) 

1 If i=j 

2      print Ai 

3 else 

4       print ‘(‘ 

5       PRINT_OPTIMAL (A, i, k) 

6       PRINT_OPTIMAL (A, k+1, j) 

7       print ‘)‘ 
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Here we are having 4 matrices let us denote it as A1,A2,A3,A4 so Calling PRINT_OPTIMAL (A, 1, 4) 
Note :For values of k see matrix S[i][j] 

 
 

(9) Longest chain subsequence using dynamic programming  
 

Algorithm                       

LCS-LENGTH(X, Y) 

 1 m ← length[X] 

 2 n ← length[Y]  

 3 for i ← 1 to m 

 4      do c[i, 0] ← 0 

 5 for j ← 0 to n 

 6      do c[0, j] ← 0 

 7 for i ← 1 to m 

 8      do for j ← 1 to n 

 9         do if xi = yj 

10         then c[i, j] ← c[i - 1, j - 1] + 1 

11         b[i, j] ← "↖" 
12         else if c[i - 1, j] ≥ c[i, j - 1] 

13         then c[i, j] ← c[i - 1, j]  

14         b[i, j] ← "↑" 

15         else c[i, j] ← c[i, j - 1]  

16         b[i, j] ← "←" 

17 return c and b   

 

PRINT_OPTIMAL (A, 1, 4) 

PRINT_OPTIMAL (A, 1, 3) PRINT_OPTIMAL (A, 4, 4) print ‘ ( ‘ print ‘ ) ‘ 

print ‘ ( ‘ PRINT_OPTIMAL (A, 1, 2) PRINT_OPTIMAL (A, 3, 3) print ‘ ( ‘ print ‘ ) ‘ print A4 print ‘ ) ‘ 

print ‘ ( ‘ print ‘ ( ‘ 

print ‘ ( ‘ PRINT_OPTIMAL (A, 1, 1) PRINT_OPTIMAL (A, 2, 2) print ‘ ) ‘ 

print ‘ ) ‘ print A3 print A4 

print ‘ ( ‘ print ‘ ( ‘ print ‘ ( ‘ print A1 print A2 print ‘ ) ‘ print A3 print ‘ ) ‘ print A4 print ‘ ) 

‘ 

print ‘ ) 

‘ 
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 We need to generate table c(1..m, 1..n) where m=length of string S1 and n= length of string S2 

 b[i][j] stores directions like(←, ↑, ↖) 
 To generate table c[i][j] use following steps  
  Step-1: Make c[i][0]=0 and c[0][j]=0 

  Step-2: if xi = yj then c[i,j] ← c[i-1,j-1]+1 and b[i,j]←”↖” 
  Step-3: else if c[i-1,j] ≥ c[I,j-1]   then c[i,j] ← c[i-1,j] and          

b[i,j] ← ”↑” 

Step-4 else c[i,j] ← c[i,j-1] and b[i,j]  ←  ”←” 

 
Example 
Find any one Longest Common Subsequence of given two strings using Dynamic Programming. 
S1=abbacdcba    S2=bcdbbcaa 
 

 Solution: 
C[i][j]= 

  0 1 2 3 4 5 6 7 8 

  Yj b c d b b c a a 

0 Xi 0 0 0 0 0 0 0 0 0 

1 a 0 0↑ 0↑ 0↑ 0↑ 0↑ 0↑ ↖1 ↖1 

2 b 0 ↖1 1← 1← ↖1 ↖1 1← 1↑ 1↑ 

3 b 0 ↖1 1↑ 1↑ ↖2 ↖2 2← 1← 1← 

4 a 0 1↑ 1↑ 1↑ 2↑ 2↑ 2↑ ↖3 ↖2 

5 c 0 1↑ ↖2 2← 2↑ 2↑ ↖3 3↑ 3← 

6 d 0 1↑ 2↑ ↖3 3← 3← 3↑ 3↑ 3↑ 

7 c 0 1↑ ↖2 3↑ 3↑ 3↑ ↖4 4← 4← 

8 b 0 ↖1 2↑ 3↑ ↖4 ↖4 4↑ 4↑ 4↑ 

9 a 0 1↑ 2↑ 3↑ 4↑ 4↑ 4↑ ↖5 ↖5 
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C[i][j]= 

  0 1 2 3 4 5 6 7 8 

  Yj b C d b b c a a 

0 Xi 0 0 0 0 0 0 0 0 0 

1 a 0 0↑ 0↑ 0↑ 0↑ 0↑ 0↑ ↖1 ↖1 

2 b 0 ↖1 1← 1← ↖1 ↖1 1← 1↑ 1↑ 

3 b 0 ↖1 1↑ 1↑ ↖2 ↖2 2← 1← 1← 

4 a 0 1↑ 1↑ 1↑ 2↑ 2↑ 2↑ ↖3 ↖2 

5 c 0 1↑ ↖2 2← 2↑ 2↑ ↖3 3↑ 3← 

6 d 0 1↑ 2↑ ↖3 3← 3← 3↑ 3↑ 3↑ 

7 c 0 1↑ ↖2 3↑ 3↑ 3↑ ↖4 4← 4← 

8 b 0 ↖1 2↑ 3↑ ↖4 ↖4 4↑ 4↑ 4↑ 

9 a 0 1↑ 2↑ 3↑ 4↑ 4↑ 4↑ ↖5 ↖5 

           

   b c d   c  a 

  
Longest common subsequence = bcdca, Length =5 
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(1) Explain Greedy Approach. OR Give the characteristics of 
Greedy algorithm. OR Write the general structure of greedy 
algorithm. OR Elements of Greedy Strategy. 
 Greedy Algorithm works by making the decision that seems most promising at any moment; it 

never reconsiders this decision, whatever situation may arise later.  
 Greedy algorithms and the problems that can be solved by greedy algorithms are characterized 

by most or all of the following features. 
 To solve a particular problem in an optimal way using greedy approach, there is a set or list of 

candidates C. 
 For example: In Make Change Problem - the coins that are available, In Minimum Spanning Tree 

Problem - the edges of a graph that may be used to build a path, In Job Scheduling Problem - the 
set of jobs to be scheduled, etc.. 

 Once a candidate is selected in the solution, it is there forever: once a candidate is excluded 
from the solution, it is never reconsidered. 

 To construct the solution in an optimal way, Greedy Algorithm maintains two sets. One set 
contains candidates that have already been considered and chosen, while the other set contains 
candidates that have been considered but rejected. 

 The prototype for generalized greedy algorithm is given below: 

Algorithm 
Function greedy(C : set): set  
{C is the set of candidates.}  
S ← Ø ,S is a set that will hold the solution-  
while C ≠  Ø  and not solution(S) do 
 x ← select (C)  
             C ← C \ {x} 
 if feasible ( S U {x}) then 
                       S ← S U , x- 

 if solution (S) then return S 
       else return "no solution found" 
 

 The greedy algorithm consists of four functions. 
1. Solution Function:- A function that checks whether chosen set of items provides a solution.  
2. Feasible Function:- A function that checks the feasibility of a set.  
3. Selection Function:- The selection function tells which of the candidates is the most 

promising.  
4. Objective Function:- An objective function, which does not appear explicitly, but gives the 

value of a solution. 
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(2) Making Change algorithm based on greedy approach.  

 Suppose we live in a country where the following coins are available: dollars (100 cents), 
quarters (25 cents), dimes (10 cents), nickels (5 cents) and penny (1 cent).  

 Our problem is to devise an algorithm for paying a given amount to a customer using the 
smallest possible number of coins.  

 For instance, if we must pay $2.89 (289 cents), the best solution is to give the customer total 10 
coins: 2 dollars, 3 quarters, 1 dime and 4 coins of penny.  

 Most of us solve this kind of problem every day without thinking twice, unconsciously using an 
obvious greedy algorithm: starting with nothing, at every stage we add the largest valued coin 
available without worrying about the consequences. 

 The algorithm may be formalized as follows. 

Algorithm 
Function make-change(n): set of coins 

{Makes change for amount n using the least possible number of coins.}  
const C = {100, 25, 10,  5, 1} {C is the candidate set} 

S ← Ø ,S is a set that will hold the solution-  
sum ← 0 ,sum is the sum of the items in solution set S-  

while sum ≠ n do 
 x ← the largest item in C such that s + x ≤ n  
 if there is no such item then  

  return "no solution found"  
 S ← S U ,a coin of value x) 

sum ← sum + x  
return S 

 With the given values of the coins this algorithm can produces an optimal solution to make 
change problem if an adequate supply of each denomination is available.  

 However with a different series of values, or if the supply of some of the coins is limited, the 
greedy algorithm may not work.  

 In some cases it may choose a set of coins that is not optimal (that is, the set contains more 
coins than necessary), while in others it may fail to find a solution at all even though soluti on 
exists. 

 The algorithm is "greedy" because at every step it chooses the largest coin it can, without 
worrying whether this will prove to be a correct decision later.  

 Furthermore it never changes its mind: once a coin has been included in the solution, i t is there 
forever.  
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(3) Spanning tree and Minimum spanning tree.  

 Let G = ‹N, A› be a connected, undirected graph where N is the set of nodes and A is the set of 

edges. Each edge has a given non-negative length.  
 A spanning tree of a graph G is a sub-graph which is basically a tree and it contains all the 

vertices of G but does not contain cycle. 
 A minimum spanning tree of a weighted connected graph G is a spanning tree with minimum or 

smallest weight of edges. 

(4) Explain Kruskal’s Algorithm for finding minimum spanning  
tree. 

 In Kruskal’s algorithm, the set A of edges are sorted in increasing order of their length. 

 The solution set T of edges is initially empty.  

 As the algorithm progresses, edges are added to set T.  

 We examine the edges of set A one by one. 
 If an edge joins two nodes in different connected components, we add it to set T. 
 So, the two connected components now form only one component.  
 The edge is rejected if it joins two nodes in the same connected component, and therefore 

cannot be added to T as it forms a cycle.  

 The algorithm stops when n-1 edges for n nodes are added in the solution set T. 

 At the end of the algorithm only one connected component remains, and T is then a minimum 
spanning tree for all the nodes of G. 

 The algorithm is described as follows: 

Algorithm 
Function Kruskal(G = (N, A): graph; length: A → R+): set of edges  
{initialization}  
(i) Sort A by increasing length  
(ii) n ← the number of nodes in N 
(iii) T ← Ø ,Solution Set that will contain the edges of the minimum spanning tree-  
(iv) Initialize n sets, each containing a different element of set N  

             {greedy loop} 
(v) repeat 

                e ← ,u, v- ← such that e is the shortest edge not yet considered 
                ucomp ← find(u)  

                vcomp ← find(v)  
                if ucomp ≠ vcomp then  

                   merge(ucomp, vcomp)  
                   T ← T U ,e-  

             until T contains n - 1 edges  

(vi) return T 
 The complexity for the Kruskal’s algorithm is in Θ(a log n) where a is total number of edges and n 

is the total number of nodes in the graph G. 
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Example:  
Find the minimum spanning tree for the following graph using Kruskal’s Algorithm.  

 
 
 
 
 
 

Solution: 
Step 1: Sort A by increasing length  

 In increasing order of length the edges are: {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1,4}, {2, 5}, {4,7}, {3, 5), {2, 
4}, {3,6}, {5,7} and {5,6}.  
 

 
Step 2:  

Step Edges considered - {u, v} Connected Components 

Initialization - {1}{2}{3}{4}{5}{6}{7} 

1 {1,2} {1,2}(3}{4}{5}{6}{7} 
2 {2,3} {1,2,3}{4}{5}{6}{7} 

3 {4,5} {1,2,3}{4,5}{6}{7} 
4 {6,7} {1,2,3}{4,5}{6,7} 

5 {1,4} {1,2,3,4,5}{6,7} 
6 {2,5} Rejected  

7 {4,7} {1,2,3,4,5,6,7} 

 

 When the algorithm stops, solution set T contains the chosen edges {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1, 
4} and {4, 7}.  

 This minimum spanning tree is shown below whose total length is 17. 
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(5) Prim’s Algorithm to obtain minimum spanning tree.  

 In Prim's algorithm, the minimum spanning tree grows in a natural way, starting from an 

arbitrary root.  
 At each stage we add a new branch to the tree already constructed; the algorithm stops when all 

the nodes have been reached. 
 Let B be a set of nodes, and A is a set of edges. 

 Initially, B contains a single arbitrary node, and solution set T is empty. 
 At each step Prim's algorithm looks for the shortest possible edge {u, v} such that u ε B and v ε 

N\B.  

 It then adds v to set B and {u, v} to solution set T.  
 In this way the edges in T form a minimum spanning tree for the nodes in B. 

 We continue thus as long as B ≠ N.  
 The complexity for the Prim’s algorithm is Θ(n2) where n is the total number of nodes in the 

graph G. 

Algorithm 
Function Prim(G = (N, A): graph; length: A — R+): set of edges  

{initialization}  
T ← Ø 
B ← ,an arbitrary member of N-  
while B ≠ N do 

 find e = {u, v} of minimum length such that 
  u ε B and v ε N \ B  

 T ← T U ,e-  
 B ← B U {v}  

return T 
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Example:  
Find the minimum spanning tree for the above graph using Prim’s Algorithm. 

 
 

Solution: 
Step 1 

 We arbitrarily choose node 1 as the starting node. 
 

Step 2 
Step Edge Selected 

{u, v} 

Set B Edges Considered 

Initialization - {1} -- 

1 {1,2} {1,2} {1,2} {1,4} 
2 {2,3} {1,2,3} {1,4} {2,3}{2,4}{2,5} 

3 {1,4} {1,2,3,4} {1,4}{2,4}{2,5}{3,5} {3,6} 

4 {4,5} {1,2,3,4,5} {2,4}{2,5}{3,5} {3,6} {4,5} {4,7} 
5 {4,7} {1,2,3,4,5,7} {2,4}{2,5}{3,5} {3,6} {4,7} {5,6} {5,7} 

6 {6,7} {1,2,3,4,5,6,7} {2,4}{2,5}{3,5} {3,6} {5,6} {5,7}{6,7} 
 

 When the algorithm stops, T contains the chosen edges {1, 2}, {2,3}, {1,4}, {4,5}, {4,7} and {7,6}. 
 This minimum spanning tree is shown below whose total length is 17. 
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(6) Dijkstra’s algorithm for finding shortest path. 
      OR 
      Single source shortest path algorithm  

 Consider now a directed graph G = (N, A) where N is the set of nodes of graph G and A is the set 

of directed edges. 

 Each edge has a positive length. 

 One of the nodes is designated as the source node. 

 The problem is to determine the length of the shortest path from the source to each of the 
other nodes of the graph.  

 This problem can be solved by a greedy algorithm often called Dijkstra's algorithm.  
 The algorithm uses two sets of nodes, S and C.  

 At every moment the set S contains those nodes that have already been chosen; as we shall see, 
the minimal distance from the source is already known for every node in S.  

 The set C contains all the other nodes, whose minimal distance from the source is not yet 
known, and which are candidates to be chosen at some later stage.  

 Hence we have the invariant property N = S U C.  

 Initially, S contains only the source itself; when the algorithm stops, S contains all the nodes of 
the graph and our problem is solved.  

 At each step we choose the node in C whose distance to the source is smallest, and add it to S. 
 We shall say that a path from the source to some other node is special if all the intermediate 

nodes along the path belong to S.  

 At each step of the algorithm, an array D holds the length of the shortest special path to each 
node of the graph.  

 At the moment when we add a new node v to S, the shortest special path to v is also the 

shortest of all the paths to v. 

 When the algorithm stops, all the nodes of the graph are in S, and so all the paths from the 
source to some other node are special. Also the values in D give the solution to the shortest path 

problem. 



 

5 – Greedy Algorithm 

 

Gopi Sanghani, CE Department | 2150703 - ADA 8 

 
 

 For simplicity, we assume that the nodes of G are numbered from 1 to n, so N = {1, 2...., n}. 

 We can suppose that node 1 is the source.  

 The algorithm maintains a matrix L which gives the length of each directed edge:  

 L[i, j] ≥ 0 if the edge (i, j) ϵ A, and L[i, j] = ∞ otherwise.  

 The time required by the Dijkstra’s algorithm is Θ(n2). 

Algorithm 
Function Dijkstra(L[1 .. n, 1 .. n]): array [2.. n]  
 array D[2.. n]  
 {initialization} 
 C ← ,2,3,…, n- ,S = N \ C exists only implicitly} 
 for i ← 2 to n do D*i+ ← L*1, i+  
 {greedy loop}  
 repeat n - 2 times 

  v ← some element of C minimizing D*v+  
  C ← C \ ,v- ,and implicitly S ← S U ,v--  

  for each w ϵ C do 

   D*w+ ← min(D*w+, D*v+ + L*v, w+)  
 return D 

 

Example:  

 
 The algorithm proceeds as follows on the graph given above. 

Step v C D 

Initialization - {2,3,4,5} [50,30,100,10] 
1 5 {2,3,4} [50,30,20,10] 

2 4 {2,3} [40,30,20,10] 

3 3 {2} [35,30,20,10] 
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(7 ) Fractional knapsack problem with example.  OR 
        Knapsack problem using Greedy Approach. 

 We are given n objects and a knapsack.  
 Object i has a positive weight wi and a positive value vi for i = 1, 2... n.  

 The knapsack can carry a weight not exceeding W.  
 Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while 

respecting the capacity constraint.  

 In fractional knapsack problem, we assume that the objects can be broken into smaller pieces, 
so we may decide to carry only a fraction xi of object i, where 0 ≤ xi ≤ 1.  

 In this case, object i contribute xiwi to the total weight in the knapsack, and xivi to the value of 
the load.  

 Symbolic Representation of the problem can be given as follows: 

                     maximize ∑   
 
      subject to ∑   

 
      ≤ W 

                                 Where, vi > 0, wi > 0 and 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n.  
Greedy Approach 
 We shall use a greedy algorithm to solve the problem.  

 In terms of our general template of Greedy Algorithm, the candidates are the different objects, 
and a solution is a vector (x1,...,xn) telling us what fraction of each object to include in the 

knapsack. 

Algorithm 
Function knapsack(w[1..n],v[1..n],W): array [1..n]  

 {initialization}  
 for i ← 1 to n do x*i+ ← 0  

       weight ← 0  
      {greedy loop}  

      while weight < W do 
  i ← the best remaining object based on vi/wi   
  if weight + w*i+ ≤ W then x*i+ ← 1 
   weight ← weight + w*i+  
  else x*i+ ← (W - weight) / w[i]  

   weight ←W 
           return x 

 A feasible solution is one that respects the constraints  given above, and the objective function is 
the total value of the objects in the knapsack. 

 Three possible selection functions are there 
i. Most valuable remaining object: select the object with the highest value of v i 

ii. Lightest weight remaining object: select the object with the lowest value of wi  
iii. Object whose value per unit weight is as high as possible. 
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Example: 
 We are given 5 objects and weight carrying capacity of knapsack W = 100. 

 For each object, weight wi and value vi are given in the following table. 
 

Object i 1 2 3 4 5 

wi 10 20 30 40 50 
vi 20 30 66 40 60 

vi / wi 2.0 1.5 2.2 1.0 1.2 
 

Solution:  
Selection xi Value 

Max vi 0 0 1 0.5 1 146 

Min wi 1 1 1 1 0 156 
Max vi / wi 1 1 1 0 0.8 164 

 

 Here solution is given by the third selection function Max vi /  wi, where the total value gained by 
selected objects is maximum.  

 

(8) Activity Selection problem 

 An activity-selection is the problem of scheduling a resource among several competing activities. 

 We are given a set S of n activities with start time Si and finish time fi, of an ith activity. Find the 
maximum size set of mutually compatible activities. 

 Activities i and j are compatible if the half-open internal [si, fi) and [sj, fj)  
do not overlap, that is, i and j are compatible if si ≥ fj  and sj ≥  fi 

 Here, we sort the activities of set S as per increasing finish time so that we can directly identify 
mutually compatible activity by comparing finish time of first activity and start time of next 

activity. 
 Whenever we find the compatible activity, add it to the solution set A otherwise consider the 

next activity in the sequence. 

Greedy Algorithm for Activity Selection  
I.     Sort the input activities by increasing finishing time. 
        f1 ≤  f2 ≤  . . . ≤  fn  
II.    Call GREEDY-ACTIVITY-SELECTOR (s, f) 

1. n = length [s]  
2. A={i}  

3. j = 1  
4. for  i = 2  to  n  

5.         do if   si ≥ fj  
6.              then  A= AU{i}  

7.                       j = i  
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return  set A 

Example: 
 Let 11 activities are given S = {p, q, r, s, t, u, v, w, x, y, z}and start and finished times for proposed 

activities are (1, 4), (3, 5), (0, 6), 5, 7), (3, 8), 5, 9), (6, 10), (8, 11), (8, 12), (2, 13) and (12, 14) 
respectively. 

Solution: 
A = {p} Initialization at line 2 
A = {p, s} line 6 - 1st iteration of FOR - loop 

A = {p, s, w} line 6 -2nd iteration of FOR - loop 
A = {p, s, w, z} line 6 - 3rd iteration of FOR-loop 

Answer  A = {p, s, w, z} 

Analysis : 
 Part I requires O(n log n) time (by using merge of heap sort). 

Part II requires Θ (n) time assuming that activities were already sorted in part I by their finish 
time.  

 So, the total time required by algorithm is Θ (nlogn). 
 

(9) Job scheduling with deadlines using greedy approach.  

 We have set of n jobs to execute, each of which takes unit time. 
 At any point of time we can execute only one job. 

 Job i earns profit gi > 0 if and only if it is executed no later than time di. 
 We have to find an optimal sequence of jobs such that our total profit is maximized. 

 A set of job is feasible if there exits at least one sequence that allows all the jobs in the set to be 
executed no later than their respective deadlines. 

 The greedy algorithm for this problem consists of constructing the schedule step by step.  

 At each step the job with the highest value of profit gi is added in the solution set among those 
that are not yet considered, provided that the chosen set of jobs remains feasible.  

Algorithm 
1. Sort all the n jobs in decreasing order of their profit. 

2. Let total position P = min(n, max(di)) 
3. Each position 0, 1, 2…, P is in different set and F(,i-) = i, for 0 ≤ i ≤ P. 

4. Find the set that contains d, let this set be K. if F(K) = 0 reject the job; otherwise: 
a. Assign the new job to position F(K). 
b. Find the set that contains F(K) – 1. Call this set L. 

c. Merge K and L. the value for this new set is the old value of F(L). 

Example: 
 Using greedy algorithm find an optimal schedule for following jobs with n=6. Profits: 

(P1,P2,P3,P4,P5,P6) = (20,15,10,7,5,3) and deadline (d1,d2,d3,d4,d5,d6) = (3, 1, 1, 3, 1, 3). 

Solution: 
Job i 1 2 3 4 5 6 

Profit gi 20 15 10 7 5 3 
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Deadline di 3 1 1 3 1 3 

Steps:  
 Here jobs are already sorted in decreasing order of their profit. 

 Let P = min(6, 3) = 3 
F = 0 1 2 3 

Job selected 0 0 0 0 

 
 d1 = 3 : assign job 1 to position 3 

F = 0 1 2 0 

Job selected 0 0 0 1 

 

 d2 = 1 : assign job 2 to position 1 

F = 0 0 2 0 

Job selected 0 2 0 1 

 
 d3 = 1 : No free position so reject the job. 

 d4 = 3 : assign job 4 to position 2 as position 3 is not free but position 2 is free.  

F = 0 0 0 0 

Job selected 0 2 4 1 

 

 Now no more free position is left so no more jobs can be scheduled.  

 The final optimal sequence: Execute the job in order 2, 4, 1 with total profit value 42. 
 

(10) Huffman Codes  
 Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman 

code. 

 Huffman coding is a lossless data compression algorithm.  

 The idea is to assign variable-length codes to input characters. 

 Lengths of the assigned codes are based on the frequencies of corresponding characters.  

 The most frequent character gets the smallest code and the least frequent character gets the 
largest code. 

 The variable-length codes assigned to input characters are Prefix Codes. 

 In Prefix codes, the codes (bit sequences) are assigned in such a way that the code assigned to 
one character is not a prefix of code assigned to any other character.  

 This is how Huffman Coding makes sure that there is no ambiguity when decoding the generated 

bit stream. 

 There are mainly two major parts in Huffman Coding 
1. Build a Huffman Tree from input characters. 

2. Traverse the Huffman Tree and assign codes to characters. 
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Algorithm 

HUFFMAN(C) 
1. n = |C| 
2. Q = C 
3. for i = 1 to n-1 
4.         allocate a new node z 
5.         z.left = x = EXTRACT-MN(Q) 
6.         z.right = y = EXTRACT-MIN(Q) 
7.         z.freq = x.freq + y.freq 
8.         INSERT(Q,z) 
9. return EXTRACT-MIN(Q)  // return the root of the tree 

 We assume here that C is a set of n characters and that each character c ϵ C is an object with an 

attribute c. freq giving its frequency. 

 The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner.  

 It begins with a set of |C| leaves and performs a sequence of |C|- 1 “merging” operations to 
create the final tree.  

 The algorithm uses a min-priority queue Q, keyed on the freq attribute, to identify the two least-

frequent objects to merge together.  

 When we merge two objects, the result is a new object whose frequency is the sum of the 
frequencies of the two objects that were merged. 

Example:  
 Huffman’s greedy algorithm uses a table giving how often each character occurs (i.e., its 

frequency) to build up an optimal way of representing each character as a binary string. 
 Suppose we have a 100,000-character data file that we wish to store compactly. 

 We observe that the characters in the file occur with the frequencies given by following table. 

 That is, only 6 different characters appear, and the character a occurs 45,000 times. 
Characters a b c d e f 

Frequency (in 
thousand) 45 13 12 16 9 5 

 

Solution: 
 The steps of Huffman’s algorithm for the frequencies given above as step no. 1 to 6. 
  Each step shows the contents of the queue sorted into increasing order by frequency.  

 At each step, the two trees with lowest frequencies are merged.  
 Leaves are shown as rectangles containing a character and its frequency.  

 Internal nodes are shown as circles containing the sum of the frequencies of their children. 

 An edge connecting an internal node with its children is labeled 0 if it is an edge to a left child 
and 1 if it is an edge to a right child.   

 The code-word for a letter is the sequence of labels on the edges connecting the root to the leaf 
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for that letter. 
 

 
Step-1:    Arrange elements in ascending order:- 

 
Step-2:  

 

Step-3:  

 
Step-4: 

 

Step-5: 

 
Step-6: 

 
 

Frequency (in 
thousand) 

a b c d e f 
45 13 12 16 9 5 

Huffman code-
word 

0 101 100 111 1101 1100 
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(1) Undirected and directed graph 

Graph: 
 A graph G consist of a non-empty set V called the set of nodes (points, vertices) of the graph, a set E 

which is the set of edges and a mapping from the set of edges E to as set of pairs of elements V. 

 It is also convenient to write a graph as G= (V, E). 

 Notice that definition of graph implied that to every edge of a graph G, we can associate a pair of 
nodes of the graph. If an edge X ϵ E is thus associated with a pair of nodes (U,V) where U,V ϵ V then 
we says that edge X connect U and V. 

Directed Graph:  
 A graph in which every edge is directed is called directed graph or digraph. 

Undirected Graph: 
 A graph in which every edge is undirected is called directed graph or digraph. 

(2) Traversing Graph/Tree. 

The following are the techniques for traversing the trees: 

1) Preorder 

To traverse the tree in preorder, perform the following steps: 

i) Visit the root. 
ii) Traverse the left sub tree in preorder. 
iii) Traverse the right sub tree in preorder. 

2) In order 
i) Traverse the left sub tree in in order. 
ii) Visit the root. 
iii) Traverse the right sub tree in in order. 

3) Post order 
i) Traverse the left sub tree in Post order. 
ii) Traverse the right sub tree in Post order. 
iii) Visit the root 

 The time T (n) needed to explore a binary tree containing n nodes is in Θ (n). 

(3) Depth-First Search of graph  
 Let G = (N, A) be an undirected graph all of whose nodes we wish to visit.  

 Suppose it is somehow possible to mark a node to show it has already been visited. 

 To carry out a depth-first traversal of the graph, choose any node v Є N as the starting point. 

 Mark this node to show it has been visited. 

 Next, if there is a node adjacent to v that has not yet been visited, choose this node as a new starting 
point and call the depth-first search procedure recursively.  

 On return from the recursive call, if there is another node adjacent to v that has not been visited, 
choose this node as the next starting point, and call the procedure recursively once again, and so on.  

 When all the nodes adjacent to v are marked, the search starting at v is finished.  

 If there remain any nodes of G that have not been visited, choose any one of them as a new starting 
point, and call the procedure yet again.  
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 Continue thus until all the nodes of G are marked. 

 Here is the recursive algorithm. 

procedure dfsearch(G) 

 for each v Є N do mark[v] ← not-visited 

 for each v Є N do  

  if mark[v] ≠ visited then dfs(v) 

procedure dfs(v) 

 {Node v has not previously been visited} 

 mark[v] ← visited 

 for each node w adjacent to v do  

  if mark[w] ≠ visited then dfs(w) 

Example: 

Consider the following graph. 

 
Depth-first search progresses through the graph 
 

1. dfs (1) initial call 
2.     dfs (2) recursive call 
3.         dfs (3) recursive call 
4.            dfs (6) recursive call 
5.                 dfs (5) recursive call ; progress is blocked 
6.      dfs (4) a neighbor of node 1 has not been visited 
7.         dfs (7) recursive call 
8.             dfs (8) recursive call 
9. there are no more nodes to visit. recursive call; progress is blocked 

 The execution time is in Θ (max (a, n)) 

 Depth first traversal of a connected graph associates a spanning tree of a graph. 
 If the graph being explored is not connected, a DFS associates to it not a single tree but a forest of 

trees, one for each connected component of the graph. 
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(4) Breadth-First Search of graph 

 Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search systematically 
explores the edges of G to "discover" every vertex that is reachable from s. 

 It computes the distance (smallest number of edges) from s to each reachable vertex. 

 It also produces a "breadth-first tree" with root s that contains all reachable vertices.  

 For any vertex v reachable from s, the path in the breadth-first tree from s to v corresponds to a 
"shortest path" from s to v in G, that is, a path containing the smallest number of edges.  

 The algorithm works on both directed and undirected graphs.  

 Breadth-first search is so named because it expands the frontier between discovered and 
undiscovered vertices uniformly across the breadth of the frontier.  

 That is, the algorithm discovers all vertices at distance k from s before discovering any vertices at 
distance k + 1. 

 The algorithm for breadth-first search is as follows: 

procedure search(G) 
 for each v ε N do mark[v] ← not visited 
 for each v ε N do 
  if mark[v] ≠ visited then { dfs2 or bfs } (v) 

procedure bfs(v) 

 Q ← empty-queue 

 mark[v] ← visited 

 enqueue v into Q 

 while Q is not empty do 

  u ← first(Q) 

  dequeue u from Q 

  for each node w adjacent to u do 

   if mark[w] ≠ visited then mark[w] ← visited 

    enqueue w into Q 
 

 Breadth first search in not naturally recursive. To understand the differences and similarities, let us 
first consider the non-recursive formulation of DFS algorithm. 

 Let stack be a data type allowing two operations PUSH and POP. It handles elements in LIFO odder. 

 The function top denotes the first element at the top of the stack. 
 

procedure dfs2(v) 

P ← empty stack 

mark[v] ← visited 

PUSH v onto P 

while P is not empty do 

while there exists a node w adjacent to top(P) such that 
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mark[w] ≠ visited do 

mark[w] = visited 

PUSH w onto P {w becomes new top(P)} 

POP P 

Example: 
Consider the following graph. 

 
If node 1 is starting point 

 Node Visited Q 

1. 1 2,3,4 

2. 2 3,4,5,6 

3. 3 4,5,6 

4. 4 5,6,7,8 

5. 5 6,7,8 

6. 6 7,8 

7. 7 8 

8. 8 - 
 

(5) Topological sort 

A topological sort of the nodes of a directed acyclic graph is the operation of arranging the nodes in order 
in such a way that if there exists an edge (i, j ), then i precedes j in the list. 
Given graph (V, E) find a linear ordering of vertices such that for all edges (v,w) v represents w in 
ordering. 

Example: Consider the following graph 
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Step-1:  Identifying vertices that have no incoming 
edge.  Here, node A and F having no incoming 
edges. 
Step-2: Select vertex delete this vertex with all its 
outgoing edges and put it in output list. Here, 
vertex A is deleted. 

 
O/P: A 

Now selecting vertex B and deleting it with its 
edges 
 

 
 
 
 
O/P: A,B 

Repeating the steps gives ordered output as A,B,C,D,E,F 
 

 

(6) Articulation Point 

 A node v of a connected graph is an articulation point if the subgraph obtained by deleting v and the 
entire edges incident on v is no longer connected. 

 A graph G is biconnected or unarticulated if it is connected and has no articulation points. 

 A graph is bicoherent or 2 – edge connected if each articulation point is joined by at least two edges 
to each component of the remaining subgraph. 

For example, node 1 is an articulation point of the graph in the above figure; If we delete it, there remain 
two connected components {2, 3, 5, 6} and {4, 7, 8}. 

 

The following is the complete algorithm for finding the articulation points of an undirected graph G: 

1) Carry out a depth-first search in G, starting from any node. Let T be the tree generated by this 
search, and for each node v of G, let prenum[v] be the number assigned by the search. 

2) Traverse T in postorder. For each node v visited, calculate highest[v] as the minimum of 
(a) prenum [v]; 
(b) prenum [w] for each node w such that there is an edge {v, w} in G with no corresponding 

edge in T; and 
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(c)  highest  [x] for every child x of v. 
3) Determine the articulation paints of G as follows. 

(a) The root of T is an articulation point if and only if it has more than one child. 
(b)  Any other node v is an articulation point if and only if it has a child x such that highest[x] ≥ 

prenum[v]. 

Following figure shows the depth first tree of the given graph with prenum on left and highest on the 
right of every node. 

 
Articulation points: 

Step 3 (a) Root of T has two child nodes so root (node 1) is an articulation point. 

Step 3 (b) For node 4, highest [5] ≥ prenum [4] so node 4 is an articulation point. 
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(7) Connected Components 

 A directed graph is strongly connected if there exists a path from u to v and also a path from v to u for 
every distinct pair of nodes u and v. 

 If a directed graph is not strongly connected, we are interested in the largest sets of nodes such that 
the corresponding sub graphs are strongly connected.  

 Each of these sub graphs is called a strongly connected component of the original graph. In the graph 
of Figure, for instance, nodes {1, 2, 3} and the corresponding edges form a strongly connected 
component. Another component corresponds to the nodes {4, 7, 8}.  

 Despite the fact that there exist edges (1, 4) and (1, 8), it is not possible to merge these two strongly 
connected components into a single component because there exists no path from node 4 to node 1. 

 
 
 
 
 
 
 
 
 

5 8 7 
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(1) Back Tracking 

 In its basic form, backtracking resembles a depth first search in a directed graph. 

 The graph is usually a tree or at least it does not contain cycles. 

 The graph exists only implicitly.  

 The aim of the search is to find solutions to some problem. 

 We do this by building partial solutions as the search proceeds. 

 Such partial solutions limit the regions in which a complete solution may be found. 

 Generally, when the search begins, nothing is known about the solutions to the problem.  

 Each move along an edge of the implicit graph corresponds to adding a new element to a partial 
solution. That is to narrow down the remaining possibilities for a complete solution. 

 The search is successful if, proceeding in this way, a solution can be completely defined. 

 In this case either algorithm may stop or continue looking for alternate solutions. 

 On the other hand, the search is unsuccessful if at some stage the partial solution constructed so far 
cannot be completed. 

 In this case the search backs up like a depth first search. 
When it gets back to a node with one or more unexplored neighbors, the search for a solution 
resumes. 

(2) The Eight queens problem 

 The classic problem of placing eight queens on a chessboard in such a way that none of them 
threatens any of the others.  

 Recall that a queen threatens the squares in the same row, in the same column, or on the same 
diagonals. 

 The most obvious way to solve this problem consists of trying systematically all the ways of placing 
eight queens on a chessboard, checking each time to see whether a solution has been obtained.  

 This approach is of no practical use, even with a computer, since the number of positions we would 

have to check is (64
8
)= 4426165368.  

 The first improvement we might try consists of never putting more than one queen on any given row.  

 This reduces the computer representation of the chessboard to a vector of eight elements, each giving 
the position of the queen in the corresponding row.  

 For instance, the vector (3, 1, 6, 2, 8, 6, 4, 7) represents the position where the queen on row 1 is in 
column 3, the queen on row 2 is in column 1, and so on. 

Solution using Backtracking 

 Backtracking allows us to do better than this. As a first step, we reformulate the eight queen’s 
problem as a tree searching problem. We say that a vector V[1…k] of integers between 1 and 8 is k-
promising, for 0 ≤ k ≤ 8, if none of the k queens placed in positions (1, V[1]), (2, V[2]), … , (k, V[k]) 
threatens any of the others. 

 Mathematically, a vector V is k-promising if, for every pair of integers i and j between 1 and k with i ≠ 
j, we have V[i] - V[j] does not belongs to {i-j, 0, j – i}. For k ≤ 1, any vector V is k-promising.  

 Solutions to the eight queens’ problem correspond to vectors that are 8-promisng. 

 Let N be the set of k-promising vectors, 0 ≤ k ≤ 8.  

 Let G = (N, A) be the directed graph such that (U, v) ∈ A if and only if there exists an integer k, 0 ≤ k  ≤ 
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1  

2  
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1 

2  
3 
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 1 

 2 
3 

No solution 

No solution 
Solution 

8 such that, 

 U is k-promising,  

 V is (k + 1)-promising, and  

 U[i] = V[i] for every i ∈ [1..k]. 

The algorithm for the 8 – queens problem is given as follows: 

 

procedure queens (k, col, diag45, diag135) 
  {sol[1..k] is k  promising, 
  col = {sol[i] | 1 ≤ i ≤k}, 
  diag45 = {sol[i] – i + 1 | 1 ≤ i ≤ k}, and 

  diag135 = {sol[i] + i – 1 | 1 ≤ i ≤ k}} 
  if k = 8 then {an 8-promising vector is a solution} 
   write sol 
  else {explore (k+1)  promising extensions of sol } 
   for j ← 1 to 8 do  

if j does not belongs to col and j – k does not belongs to diag45  and j + k does not 
belongs to diag135 

    then sol[k+1] ← j 
             {sol[1..k+1] is (k+1)-promising} 
             queens(k + 1, col U {j}, 

      diag45 U {j - k}, diag135 U {j + k}) 

Solution of 4 queens problem 
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(3) Knapsack problem using back tracking 

 We are given a certain number of objects and a knapsack. 

 We shall suppose that we have n types of object, and that an adequate number of objects of each 
type are available.  

 This does not alter the problem in any important way. For i = 1, 2,..., n, an object of type i has a 
positive weight wi and a positive value vi.  

 The knapsack can carry a weight not exceeding W.  

 Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while 
respecting the capacity constraint.  

 We may take an object or to leave it behind, but we may not take a fraction of an object. 

 Suppose for concreteness that we wish to solve an instance of the problem involving four types of 
objects, whose weights are respectively 2, 3, 4 and 5 units, and whose values are 3, 5, 6 and 10. The 
knapsack can carry a maximum of 8 units of weight. 

 This can be done using backtracking by exploring the implicit tree shown below. 

  

0/1 knapsack space tree 

 Here a node such as (2, 3; 8) corresponds to a partial solution of our problem. 

  The figures to the left of the semicolon are the weights of the objects we have decided to include, 
and the figure to the right is the current value of the load.  

 Moving down from a node to one of its children corresponds to deciding which kind of object to put 
into the knapsack next. Without loss of generality we may agree to load objects into the knapsack in 
order of increasing weight. 

 Initially the partial solution is empty.  

 The backtracking algorithm explores the tree as in a depth-first search, constructing nodes and partial 
solutions as it goes.  

 In the example, the first node visited is (2;3), the next is (2,2;6), the third is (2,2,2;9) and the fourth 
(2,2,2.2; 12).  

 As each new node is visited, the partial solution is extended.  

 After visiting these four nodes, the depth-first search is blocked: node (2, 2, 2, 2; 12) has no unvisited 
successors (indeed no successors at all), since adding more items to this partial solution would violate 
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the capacity constraint.  

 Since this partial solution may turn out to be the optimal solution to our instance, we memorize it. 

 The depth-first search now backs up to look for other solutions.  

 At each step back up the tree, the corresponding item is removed from the partial solution.  

 In the example, the search first backs up to (2, 2, 2; 9), which also has no unvisited successors; one 
step further up the tree, however, at node (2, 2; 6), two successors remain to be visited.  

 After exploring nodes (2, 2, 3; 11) and (2, 2, 4; 12), neither of which improves on the solution 
previously memorized, the search backs up one stage further, and so on.  

 Exploring the tree in this way, (2, 3, 3; 13) is found to be a better solution than the one we have, and 
later (3, 5; 15) is found to be better still.  

 Since no other improvement is made before the search ends, this is the optimal solution to the 
instance. 

 Algorithm can be given as follows: 

function backpack(i, r) 

{Calculates the value of the best load that can be constructed using items of types i to n and whose 
total weight does not exceed r } 

b ← 0 

{Try each allowed kind of item in turn}  

for k ← i to n do  

 if w[k] ≤ r then 

  b ← max(b, v[k] + backpack(k, r - w[k])) 

return b 

Now to find the value of the best load, call backpack (1, W). 

(4) Minmax Principle  

 Sometimes it is impossible to complete a search due to large number of nodes for example games like 
chess. 

 The only solution is to be content with partial solution. 

 Minmax is a heuristic approach and used to find move possibly better than all other moves. 

 Whichever search technique we use, the awkward fact remains that for a game such as chess a 
complete search of the associated graph is out of the question.  

 In this situation we have to be content with a partial search around the current position. 

 This is the principle underlying an important heuristic called Minimax.  

 Minimax (sometimes Minmax) is a decision rule used in decision theory, game theory, statistics and 
philosophy for minimizing the possible loss for a worst case (maximum loss) scenario.  

 Originally formulated for two-player zero-sum game theory, covering both the cases where players 
take alternate moves and those where they make simultaneous moves, it has also been extended to 
more complex games and to general decision making in the presence of uncertainty. 

 A Minimax algorithm is a recursive algorithm for choosing the next move in an n-player game, usually 
a two-player game.  
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 A value is associated with each position or state of the game. This value is computed by means of a 
position evaluation function and it indicates how good it would be for a player to reach that position. 
The player then makes the move that maximizes the minimum value of the position resulting from the 
opponent's possible following moves. 

 Although this heuristic does not allow us to be certain of winning whenever this is possible, it finds a 
move that may reasonably be expected to be among the best moves available, while exploring only 
part of the graph starting from some given position. 

 Exploration of the graph is normally stopped before the terminal positions are reached, using one of 
several possible criteria, and the positions where exploration stopped are evaluated heuristically.  

 In a sense, this is merely a systematic version of the method used by some human players that 
consists of looking ahead a small number of moves. 

Example: Tic tac toe 
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(5) Branch and Bound Travelling Salesman Problem 

Branch and Bound 

 Set up a bounding function, which is used to compute a bound (for the value of the objective 
function) at a node on a state-space tree and determine if it is promising. 

 Promising (if the bound is better than the value of the best solution so far): expand beyond the node. 

 Non-promising (if the bound is no better than the value of the best solution so far): not expand 
beyond the node (pruning the state-space tree). 

Traveling Salesman Problem 

Construct the state-space tree: 

 A node = a vertex: a vertex in the graph. A node that is not a leaf represents all the tours that start 
with the path stored at that node; each leaf represents a tour (or non-promising node).  

 Branch-and-bound: we need to determine a lower bound for each node.  
- For example, to determine a lower bound for node [1, 2] means to determine a lower bound on 

the length of any tour that starts with edge 1—2.  

 Expand each promising node, and stop when all the promising nodes have been expanded. During this 
procedure, prune all the non-promising nodes. 
- Promising node: the node’s lower bound is less than current minimum tour length.  
- Non-promising node: the node’s lower bound is NO less than current minimum tour length. 

 Because a tour must leave every vertex exactly once, a lower bound on the length of a tour is b (lower 
bound) minimum cost of leaving every vertex.  

 The lower bound on the cost of leaving vertex v1 is given by the minimum of all the nonzero entries in 
row 1 of the adjacency matrix. 

 The lower bound on the cost of leaving vertex vn is given by the minimum of all the nonzero entries in 
row n of the adjacency matrix. 

 Because every vertex must be entered and exited exactly once, a lower bound on the length of a tour 
is the sum of the minimum cost of entering and leaving every vertex. 

 For a given edge (u, v), think of half of its weight as the exiting cost of u, and half of its weight as the 
entering cost of v.  

 The total length of a tour = the total cost of visiting (entering and exiting) every vertex exactly once. 

 The lower bound of the length of a tour = the lower bound of the total cost of visiting (entering and 
exiting) every vertex exactly once. 

 Calculation:  
- For each vertex, pick top two shortest adjacent edges (their sum divided by 2 is the lower bound 

of the total cost of entering and exiting the vertex); add up these summations for all the vertices. 

 Assume that the tour starts with vertex a and that b is visited before c. 
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Example: 

 

 
 
 
 
 

a b 

c d 

e 

3 

4 

1 7 6 5 

2 3 

8 
9 
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(1) The naive string matching algorithm 

 The string-matching problem is defined as follows. 

 We assume that the text is an array T [1…n] of length n and that the pattern is an array P [1…m] of 
length m ≤ n. 

 We further assume that the elements of P and T are characters drawn from a finite alphabet Σ.  For 
example, we may have Σ = {0, 1} or Σ = {a, b ..., z}. 

 The character arrays P and T are often called strings of characters. 

 We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at 
position s + 1 in text T) if 0 ≤ s ≤ n - m and T [s + 1…s + m] = P [1…m] (that is, if T [s + j] = P[j], for 1 ≤ j ≤ 
m). 

 If P occurs with shift s in T, then we call s a valid shift; otherwise, we call s an invalid shift. The string-
matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a 
given text T. 

 The naive algorithm finds all valid shifts using a loop that checks the condition P [1…m] = T [s + 1…s + 
m] for each of the n - m + 1 possible values of s. 

 

NAIVE-STRING-MATCHER(T, P) 

1 n ← length[T] 

2  m ← length[P] 

3  for s ← 0 to n – m do 

4    if P[1,…, m] == T[s + 1,…, s + m] 

5    then print "Pattern occurs with shift" s 

 The naive string-matching procedure can be interpreted graphically as sliding a "template" containing 
the pattern over the text, noting for which shifts all of the characters on the template equal the 
corresponding characters in the text, as illustrated in Figure. 

 The for loop beginning on line 3 considers each possible shift explicitly. 

 The test on line 4 determines whether the current shift is valid or not; this test involves an implicit 
loop to check corresponding character positions until all positions match successfully or a mismatch is 
found. 

 Line 5 prints out each valid shift s. 

Example: 

 
 

 In the above example, valid shift is s = 3 for which we found the occurrence of pattern P in text T. 

 Procedure NAIVE-STRING-MATCHER takes time O ((n - m + 1) m), and this bound is tight in the worst 
case. The running time of NAIVE-STRING- MATCHER is equal to its matching time, since there is no 
preprocessing. 

a c a a b c a c a a b c a c a a b c a c a a b c 

a a b a a b a a b a a b 
S=1 S=2 S=3 S=4 
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(2) The Rabin-Karp algorithm 

 This algorithm makes use of elementary number-theoretic notions such as the equivalence of two 
numbers modulo a third number. 

 Let us assume that Σ = {0, 1, 2… 9}, so that each character is a decimal digit. (In the general case, we 
can assume that each character is a digit in radix-d notation, where d = |Σ|).  

 We can then view a string of k consecutive characters as representing a length-k decimal number. The 
character string 31415 thus corresponds to the decimal number 31,415. 

 Given a pattern P [1…m], let p denotes its corresponding decimal value.  

 In a similar manner, given a text T [1…n], let ts denote the decimal value of the length-m substring T[s 
+ 1…s + m], for s = 0, 1. . . n - m.  

 Certainly, ts = p if and only if T [s + 1…s + m] = P [1…m]; thus, s is a valid shift if and only if ts = p. 

 We can compute p in time θ(m) using Horner's rule: 

 P = P[m] + 10 (P[m - 1] + 10(P[m - 2] + · · · + 10(P[2] + 10P[1])…)) 

 The value t0 can be similarly computed from T [1…m] in time θ(m). 

 To compute the remaining values t1, t2, . . . , tn-m in time θ(n - m), it suffices to observe that ts+1 can be 
computed from ts in constant time, since 

  ts+1 = 10(ts – 10m-1T[s + 1]) + T[s + m + 1] 

 Subtracting 10m-1 T[s + 1] removes the high-order digit from ts, multiplying the result by 10 shifts the 
number left one position, and adding T [s + m + 1] brings in the appropriate lower order digit. 

 For example, if m = 5 and ts = 31415 then we wish to remove the high order digit T [s + 1] = 3 and 
bring in the new lower order digit (suppose it is T [s + 5 + 1] = 2) to obtain ts+1 = 10 (31415 – 10000 *3) 
+ 2 = 14152 

 The only difficulty with this procedure is that p and ts may be too large to work with conveniently. 

 There is a simple cure for this problem, compute p and the ts's modulo a suitable modulus q. 

  ts+1 = (d(ts – T[s + 1]h) + T[s + m + 1]) mod  q 

Where h = dm-1 (mod q) is the value of the digit "1" in the high-order position of an m-digit text 
window. 

 The solution of working modulo q is not perfect, however ts = p (mod q) does not imply that ts = p but 
if ts ≠ p (mod q) definitely implies ts ≠ p, so that shift s is invalid. 

 Any shift s for which ts = p (mod q) must be tested further to see whether s is really valid or it is just a 
spurious hit. 

 This additional test explicitly checks the condition T [s + 1…s + m] = P [1…m]. 
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Algorithm RABIN-KARP-MATCHER(T, P, d, q) 

 n ← length[T]; 

 m ← length[P]; 

 h ← dm-1 mod q; 

 p ← 0; 

 t0 ← 0; 

 for i ← 1 to m do  

  p ← (dp + P[i]) mod q; 

  t0 ← (dt0 + P[i]) mod q 

 for s ← 0 to n – m do  

  if p == ts then 

   if P[1..m] == T[s+1..s+m] then  

    print “pattern occurs with shift s” 

  if s < n-m then  

   ts+1 ← (d(ts – T[s+1]h) + T[s+m+1]) mod q 

Analysis  

 RABIN-KARP-MATCHER takes Θ(m) preprocessing time and it matching time is Θ(m(n – m + 1)) in the worst 
case. 

Example: 

Given T = 31415926535 and P = 26 

We choose q = 11 

P mod q = 26 mod 11 = 4 

3 1 4 1 5 9 2 6 5 3 5 
 

31 mod 11 = 9 not equal to 4 

3 1 4 1 5 9 2 6 5 3 5 
 

14 mod 11 = 3 not equal to 4 

3 1 4 1 5 9 2 6 5 3 5 
 

41 mod 11 = 8 not equal to 4 

3 1 4 1 5 9 2 6 5 3 5 
 

15 mod 11 = 4 equal to 4 -> spurious hit 

3 1 4 1 5 9 2 6 5 3 5 
 

59 mod 11 = 4 equal to 4 -> spurious hit 

3 1 4 1 5 9 2 6 5 3 5 
 

92 mod 11 = 4 equal to 4 -> spurious hit 

3 1 4 1 5 9 2 6 5 3 5 
 

26 mod 11 = 4 equal to 4 -> an exact match!! 
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3 1 4 1 5 9 2 6 5 3 5 
 

65 mod 11 = 10 not equal to 4 

3 1 4 1 5 9 2 6 5 3 5 
 

53 mod 11 = 9 not equal to 4 

3 1 4 1 5 9 2 6 5 3 5 
 

35 mod 11 = 2 not equal to 4 
 

(3) String Matching with finite automata 

 Many string-matching algorithms build a finite automaton that scans the text string T for all 
occurrences of the pattern P. 

 We begin with the definition of a finite automaton. We then examine a special string-matching 
automaton and show how it can be used to find occurrences of a pattern in a text. 

 Finally, we shall show how to construct the string-matching automaton for a given input pattern. 

Finite automata 

A finite automaton M is a 5-tuple (Q, q0, A, Σ, δ), where 

 Q is a finite set of states, 

 q0  Є Q is the start state, 

 A  C Q is a distinguished set of accepting states, 

 Σ is a finite input alphabet, 
δ is a function from Q × Σ into Q, called the transition function of M. 

 The finite automaton begins in state q0 and reads the characters of its input string one at a time. 

 If the automaton is in state q and reads input character a, it moves ("makes a transition") from state q 
to state δ(q, a). 

 Whenever its current state q is a member of A, the machine M is said to have accepted the string read 
so far. An input that is not accepted is said to be rejected. 

 Following Figure illustrates these definitions with a simple two-state automaton. 

 

 

String-matching automata 

 There is a string-matching automaton for every pattern P; this automaton must be constructed 
from the pattern in a preprocessing step before it can be used to search the text string. 

 In our example pattern P = ababaca. 

 In order to properly search for the string, the program must define a suffix function () which 
checks to see how much of what it is reading matches the search string at any given moment.  
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σ(x) = max {k : Pk ⊐   x} 
P= ababa 
P1=a 
P2=ab 
P3=aba 
P4=abab 
σ (ababaca)=aba {here aba is suffix of pattern P}   

 We define the string-matching automaton that corresponds to a given pattern P[1,…,m] as 
follows. 

 The state set Q is {0, 1 . . . m}. The start state q0 is state 0, and state m is the only accepting state. 

 The transition function δ is defined by the following equation, for any state q and character a: 

δ (q, α) = σ(Pq α) 

ALGORITHM FINITE-AUTOMATON-MATCHER(T, δ, m) 

 n ← length[T] 

 q ← 0 

 for i ← 1 to n do 

      q ← δ(q, T[i]) 

      if q == m 

     then print "Pattern occurs with shift" i – m 

ALGORITHM COMPUTE-TRANSITION-FUNCTION(P, Σ) 

 m ← length[P] 

 for q ← 0 to m do 

       for each character α Є Σ do 

              k ← min(m + 1, q + 2) 

              repeat k ← k - 1 

              until Pk ⊐ Pq α 

        δ(q, α) ← k 

return δ 

 This procedure computes δ(q, α) in a straightforward manner according to its definition.  

 The nested loops beginning on lines 2 and 3 consider all states q and characters α and lines 4-7 set 
δ(q, a) to be the largest k such that Pk ⊐ Pq α. The code starts with the largest conceivable value of 
k, which is min (m, q + 1), and decreases k until Pk ⊐ Pq α. 

 Time complexity for string matching algorithm 
 

Algorithm Preprocessing time Matching time 

Naive 0 O((n – m + 1)m) 

Rabin-Karp Θ (m) O((n – m + 1)m) 

Finite automaton O (m|∑|) Θ (n) 
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Example: 

T= 
1 2 3 4 5 6 7 8 9 10 11  

P= 
1 2 3 4 5 6 7 

a b a b a b a c a b a  a b a b a b a 

 

q=0 α=a k=2 P2⊐P0 α 

ab⊐ϵa {here ‘ab’ is not suffix of ‘ϵa’ so k=k-1} 

  k=1 P1⊐P0 α 

a⊐ϵa { here ‘a’ suffix of ‘ϵa’ so make entry in transition table} 

 α=b k=2 P2⊐P0 α 

ab⊐ϵb {here ‘ab’ is not suffix of ‘ϵb’ so k=k-1} 

  k=1 P1⊐P0 α 

a⊐ϵb { here ‘a’ is not suffix of ‘ϵb’ so k=k-1} 

  k=0 P0⊐P0 α 

ϵ⊐ϵb { here ‘ϵ’ suffix of ‘ϵa’ so make entry in transition table} 

 α=c k=2 P2⊐P0 α 

ab⊐ϵc {here ‘ab’ is not suffix of ‘ϵc’ so k=k-1} 

  k=1 P1⊐P0 α 

a⊐ϵc { here ‘a’ is not suffix of ‘ϵc’ so k=k-1} 

  k=0 P0⊐P0 α 

ϵ⊐ϵc { here ‘ϵ’ suffix of ‘ϵc’ so make entry in transition table} 

 Repeat this procedure for q=0 to 7 we can get transition function table then pattern can be matched 
using this table 

input 

State a b c P 

0 1 0 0 a 

1 1 2 0 b 

2 3 0 0 a 

3 1 4 0 b 

4 5 0 0 a 

5 1 4 6 c 

6 7 0 0 a 

7 1 2 0  
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(4) The Knuth-Morris-Pratt algorithm 

 Knuth, Morris and Pratt proposed a linear time algorithm for the string matching problem.  

 A matching time of O(n) is achieved by avoiding comparisons with elements of ‘T’ that have previously 
been involved in comparison with some element of the pattern ‘P’ to be matched. i.e., backtracking 
on the text ‘S’ never occurs. 

The prefix function, π 

 The prefix function, π for a pattern encapsulates knowledge about how the pattern matches against 

shifts of itself. This information can be used to avoid useless shifts of the pattern ‘P’. In other words, 
this enables avoiding backtracking on the text ‘T’. 

The KMP Matcher 

 With text ‘T’, pattern ‘P’ and prefix function ‘π’ as inputs, finds the occurrence of ‘P’ in ‘T’ and 

returns the number of shifts of ‘P’ after which occurrence is found. 

KMP-MATCHER(T, P) 

 1   n ← length[T] 

 2   m ← length[P] 

 3   π ← COMPUTE-PREFIX-FUNCTION(P)  

 4   q ← 0                          //Number of characters matched. 

 5   for i ← 1 to n                 //Scan the text from left to right.  

 6      do while q > 0 and P[q + 1] ≠ T[i] 

 7             do q ← π[q]    //Next character does not match.  

 8         if P[q + 1] = T[i] 

 9            then q ← q + 1      //Next character matches. 

10         if q = m                   //Is all of P matched?  

11            then print "Pattern occurs with shift" i - m 

12                 q ← π[q]    //Look for the next match.  

 

COMPUTE-PREFIX-FUNCTION(P) 

 1   m ← length[P] 

 2   π[1] ← 0 

 3   k ← 0 

 4   for q ← 2 to m 

 5      do while k > 0 and P[k + 1] ≠ P[q] 

 6             do k ← π[k] 

 7         if P[k + 1] = P[q] 

 8            then k ← k + 1 

 9         π[q] ← k  

10   return π  
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Example: 

 

 For the pattern P = ababababca and q = 8. Figure (a) the π function for the given pattern. 

 Since π [8] = 6, π [6] = 4, π [4] = 2, and π [2] = 0, by iterating π we obtain π*[8] = {6, 4, 2, 0}. Figure (b) 

 We slide the template containing the pattern P to the right and note when some prefix Pk of P 
matches up with some proper suffix of P8; this happens for k = 6, 4, 2, and 0. 

 In the figure, the first row gives P and the dotted vertical line is drawn just after P8. 

 Successive rows show all the shifts of P that cause some prefix Pk of P to match some suffix of P8. 

 Successfully matched characters are shown shaded Vertical lines connect aligned matching 
characters. 

 Thus, {k: k < q and Pk ⊐ Pq} = {6, 4, 2, 0}. π*[q] = {k : k < q and Pk  ⊐ Pq } for all q. 

 

 

 

 



 Unit-9 –Introduction to NP Completeness 

 

 1 
 

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 

(1) P and NP Problems 

P Problems  

 The class P consists of those problems that are solvable in polynomial time. More specifically, they are 
problems that can be solved in time O(nk) for some constant k, where n is the size of the input to the 
problem. 
Fundamental complexity classes.  

 The class of problems that can be solved in polynomial time is called P class.  

 These are basically tractable.  Few examples of P class problems are, 
1. A set of decision problems with yes/no answer. 
2. Calculating the greatest common divisor. 
3. Sorting of n numbers in ascending or descending order. 
4. Searching of an element from the list, etc. 

NP Problems  

 NP = Non-Deterministic polynomial time 

 NP means verifiable in polynomial time 

 The class NP consists of those problems that are "verifiable" in polynomial time.  

 What we mean here is that if we were somehow given a "certificate" of a solution, then we could 
verify that the certificate is correct in time polynomial in the size of the input to the problem. 

 NP is one of the most fundamental classes of problems in computational complexity theory.  

 The abbreviation NP refers to non-deterministic polynomial time.  

 These problems can be solved in non-deterministic polynomial time.  

 For example 
1. Knapsack problem O(2n/2)  
2. Travelling salesperson problem (O(n22n)). 
3. Graph coloring problem. 
4. Hamiltonian circuit problems, etc... 

(2) NP hard and NP Complete problems 

NP Complete 
 The class of problems “NP-complete stands for the sub-lass od decision problems in NP that are 

hardest. 

 The class NP-complete is abbreviated as NPC and comes from: 
-Non-deterministic polynomial 
-Complete-“Solve one, solve them all” 

A decision problem L is said to be NP-Complete if: 
(i) L is in NP that means any given solution to this problem can be verified quickly in polynomial time. 
(ii) Every problem is NP reducible to L in polynomial time. 

 It means that if a solution to this L can be verified in polynomial time then it can be shown to be in NP. 

 A problem that satisfies second condition is said to be NP-hard that will be examined in recent. 

 Informally it is believed that if a NPC problem has a solution in polynomial time then all other NPC 
problems can be solved in polynomial time. 

 The list given below is the examples of some well-known problems that are NP-complete when 
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expressed as decision problems. 

i. Boolean circuit satisfiability problem(C-SAT). 

ii. N-puzzle problem. 

iii. Knapsack problem. 

iv. Hamiltonian path problem. 

v. Travelling salesman problem. 

vi. Sub graph isomorphism problem. 

vii. Subnet sum problem. 

viii. Clique Decision Problem (CDP). 

ix. Vertex cover problem. 

x. Graph coloring problem. 

 The following techniques can be applied to solve NPC problems and they often give rise to 
substantially faster algorithms: 

i. Approximation Approach. 

ii. Randomization. 

iii. Restriction. 

iv. Parameterization. 

v. Heuristics. 

NP Hard 

The class NP-hard written as NPH or NP-H stands for non-deterministic polynomial time hard. The class 
can be defined as: 

i. NPH is a class of problems that are "At least as hard as the hardest problems in NP" 

ii. A problem H is NP-hard if there is a NPC problem L that is polynomial time reducible to H (i.e. L 
H). 

iii. A problem H is said to be NPH if satisfiability reduces to H. 

iv. If a NPC problem L can be solved in polynomial time by an oracle machine with an oracle for H. 

 NP-hard problems are generally of the following types-decisions problems, search problems, or 
optimization problems.  

 To prove a problem H is NP-hard, reduce a known NP-hard problem to H.  

 If a NPH problem can be solved in polynomial time, then all NPC problems can also be solved in 
polynomial time. As a result, all NPC problems are NPH, but all NPH problems are not NPC. 

 
 
 
 
 

(3) Hamiltonian problem 



 Unit-9 –Introduction to NP Completeness 

 

 3 
 

Prof. Rupesh G. Vaishnav, CE Department | 2150703 – Analysis and Design of Algorithms 

 To find a Hamiltonian cycle un graph ‘G’ is not a decision problem but is graph G Hamiltonian is a 
decision problem. 

 In Hamiltonian problem graph G is accepted as input and it is asked to find a simple cycle in G that 
visits each vertex of G exactly on and returns to its starting vertex. Such a cycle is called Hamiltonian 
cycle. 

 Let G= (V, E) be a connected graph with ‘n’ vertices. A HAMILTONIAN CYCLE is a round trip path along 
‘n’ edges of G which every vertex once and returns to its starting position. 

 If the Hamiltonian cycle begins at some vertex V1 belongs to G and the vertex are visited in the order 
of V1,V2…….Vn+1,then the edges are in E,1<=I<=n and the Vi are distinct except V1 and Vn+1 which 
are equal. 

 Consider an example graph G1. 

 

 

 

 

 

                                               

 

 

 

                                                                                     

The graph G1 has Hamiltonian cycles: 

->1, 3, 4, 5, 6, 7, 8, 2, 1 and 

->1, 2, 8, 7, 6, 5, 4, 3, 1. 

The backtracking algorithm helps to find Hamiltonian cycle for any type of graph. 

Procedure: 
1. Define a solution vector X(Xi……..Xn) where Xi represents the Ith  visited vertex of the proposed 

cycle. 
2. Create a cost adjacency matrix for the given graph. 
3. The solution array initialized to all zeros except X (1) =1, because the cycle should start at vertex 

‘1’. 
4. Now we have to find the second vertex to be visited in the cycle. 
5. The vertex from 1 to n are included in the cycle one by one by checking 2 conditions, 

I. There should be a path from previous visited vertex to current vertex. 
II. The current vertex must be distinct and should not have been visited earlier. 

6. When these two conditions are satisfied the current vertex is included in the cycle, else the next 
vertex is tried. 

7. When the nth vertex is visited we have to check, is there any path from nth vertex to first 8 vertex. 
If no path, the go back one step and after the previous visited node. 

8. Repeat the above steps to generate possible Hamiltonian cycle. 

1 2 3 4 

8 7 6 5 
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Algorithm:(Finding all Hamiltonian cycle) 

Algorithm Hamiltonian (k) 

{ 

 Loop 

      Next value (k) 

If (x (k)=0) then return; 

{ 

If k=n then 

Print (x) 

Else 

Hamiltonian (k+1); 

End if 

} 

Repeat 

} 

 

Algorithm Nextvalue (k) 

{ 

 Repeat 

{ 

  X [k]=(X [k]+1) mod (n+1); //next vertex 

  If (X [k]=0) then return; 

  If (G [X [k-1], X [k]]  0) then 

{ 

  For j=1 to k-1 do if (X [j] =X [k]) then break;   // Check for distinction. 

  If (j=k) then          //if true then the vertex is distinct. 

    If ((k<n) or ((k=n) and G [X [n], X [1]]   0)) then return; 

} 

} Until (false); 

} 

 
 
 
 
(4) Travelling Salesman problem 

 Given a graph G = (V,E), find a cycle of edges of this graph such that all of the vertices in the graph is 
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visited exactly once with the minimum total length. 

 For example, consider Figure below. There are two cycles satisfying our condition.  

 They are C1 = abedcfa and C2 = acbedfa. 

 

 
 For the partition problem, the sum of subset problem and the satisfiability problem, their solutions 

are either "yes" or "no". They are called decision problems.  

 The minimal spanning tree problem and the traveling salesperson problem are called optimization 
problems. 

 For an optimization problem, there is always a decision problem corresponding to it.   

 For instance, consider the minimal spanning tree problem, we can define a decision version of it as 
follows:  

 Given a graph G, determine whether there exists a spanning tree of G whose total length is less than a 
given constant c. This decision version of the minimal spanning tree can be solved after the minimal 
spanning tree problem, which is an optimization problem, is solved. 

 Suppose the total length of the minimal spanning tree is a. If a < c, the answer is "yes"; otherwise, its 
answer is "no". The decision version of this minimal spanning tree problem is called the minimal 
spanning tree decision problem. Similarly, we can define the longest common subsequence decision 
problem as follows:  

 Given two sequences, determine whether there exists a common subsequence of them whose length 
is greater than a given constant c. We again call this decision problem the longest common 
subsequence decision problem. The decision version problem will be solved as soon as the 
optimization problem is solved. 

 In general, optimization problems are more difficult than decision problems.   

 To investigate whether an optimization problem is difficult to solve, we merely have to see whether 
its decision version is difficult or not.  If the decision version is difficult already, the optimization 
version must be difficult. 
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